diff --git a/src/TBA/TBA_LiebLin.cc b/src/TBA/TBA_LiebLin.cc index 0a3c4b2..a25947a 100644 --- a/src/TBA/TBA_LiebLin.cc +++ b/src/TBA/TBA_LiebLin.cc @@ -643,37 +643,55 @@ namespace ABACUS { return(sbar); } + LiebLin_Bethe_State Discretized_LiebLin_Bethe_State (DP c_int, DP L, int N, const Root_Density& rho) { // This function returns the Bethe state at finite size which is // the closest approximation to the continuum density rho(lambda) - // Each time N \int_{-\infty}^\lambda d\lambda' \rho(\lambda') crosses a half integer, add a particle: + // Check that the provided rho has the expected filling + DP rho_check = 0.0; + for (int i = 0; i < rho.Npts; ++i) rho_check += L * rho.value[i] * rho.dlambda[i]; + // The integral of rho should be between N - 0.5 and N + 0.5 for the algorithm to work + if (fabs(rho_check - N) > 0.5) + cout << "WARNING: integral of rho != N in Discretized_LiebLin_Bethe_State, " + << "consistent discretization is impossible. \int rho dlambda = " + << rho_check << ", N = " << N << ", L = " << L << ", N/L = " << N/L << endl; + + // Using the counting function + // c(\lambda) \equiv L \int_{-\infty}^\lambda d\lambda' \rho(\lambda'), + // we seek to find lambda[i] such that c(lambda[i]) = i + 0.5, i = 0...N-1 DP integral = 0.0; DP integral_prev = 0.0; int Nfound = 0; - Vect lambda_found(0.0, 2*N); + Vect lambda_found(0.0, N); + int nr_to_set = 0; for (int i = 0; i < rho.Npts; ++i) { + // Note: integral_prev is the counting function + // at rapidity rho.lambda[i-1] + 0.5* rho.dlambda[i-1] + // which equals rho.lambda[i] - 0.5* rho.dlambda[i] integral_prev = integral; + // Note: integral gives the value of the counting function + // at rapidity rho.lambda[i] + 0.5* rho.dlambda[i] integral += L * rho.value[i] * rho.dlambda[i]; - if (integral > Nfound + 0.5) { - // Subtle error: if the rho is too discontinuous, i.e. if more than one rapidity is found, must correct for this. - if (integral > Nfound + 1.5 && integral < Nfound + 2.5) { // found two rapidities - lambda_found[Nfound++] = 0.25 * (3.0 * rho.lambda[i-1] + rho.lambda[i]); - lambda_found[Nfound++] = 0.25 * (rho.lambda[i-1] + 3.0 * rho.lambda[i]); - } - else { - // Better: center the lambda_found between these points: - lambda_found[Nfound] = 0.5 * (rho.lambda[i-1] + rho.lambda[i]); - Nfound++; - } + // We already have filled the RHS of the counting equation up to Nfound - 0.5. + // Therefore, the additional number found is + nr_to_set = floor(integral + 0.5 - Nfound); + // if (nr_to_set > 1) + // cout << "WARNING: setting " << nr_to_set << " rapidities in one step in Discretized_LiebLin_Bethe_State" << endl; + for (int n = 1; n <= nr_to_set; ++n) { + // Solve c(lambda[Nfound]) = Nfound + 0.5 for lambda[Nfound], + // namely (using linear interpolation) + // integral_prev + (lambda - rho.lambda[i-1] - 0.5*rho.dlambda[i-1]) * (integral - integra_prev)/rho.dlambda[i] = Nfound + 0.5 + lambda_found[Nfound] = rho.lambda[i-1] + 0.5*rho.dlambda[i-1] + (Nfound + 0.5 - integral_prev) * rho.dlambda[i]/(integral - integral_prev); + Nfound++; } } Vect lambda(N); // Fill up the found rapidities: - for (int il = 0; il < ABACUS::min(N, Nfound); ++il) lambda[il] = lambda_found[il]; + for (int il = 0; il < abacus::min(N, Nfound); ++il) lambda[il] = lambda_found[il]; // If there are missing ones, put them at the end; ideally, this should never be called for (int il = Nfound; il < N; ++il) lambda[il] = lambda_found[Nfound-1] + (il - Nfound + 1) * (lambda_found[Nfound-1] - lambda_found[Nfound-2]); @@ -687,6 +705,9 @@ namespace ABACUS { Ix2[i] = 2.0 * floor((L* lambda[i] + sum)/twoPI + 0.5 * (N%2 ? 1 : 2)) + (N%2) - 1; } + // Check that the Ix2 are all ordered + for (int i = 0; i < N-1; ++i) if (Ix2[i] >= Ix2[i+1]) cout << "Alert: Ix2 not ordered around index i = " << i << ": Ix2[i] = " << Ix2[i] << "\tIx2[i+1] = " << Ix2[i+1] << endl; + // Check that the quantum numbers are all distinct: bool allOK = false; while (!allOK) {