/********************************************************** This software is part of J.-S. Caux's ABACUS library. Copyright (c). ----------------------------------------------------------- File: src/SCAN/General_Scan.cc Purpose: universal implementation of state scanning: functions to descend down hierarchy of intermediate states. NOTE: since templated functions have to be in the same file, we put all scanning functions here. The externally-accessible functions are defined at the end of this file. ***********************************************************/ #include "JSC.h" using namespace std; using namespace JSC; string LABEL_TO_CHECK = "bla"; //string LABEL_TO_CHECK = "6_0_"; //string LABEL_TO_CHECK = "6_2_22y32"; namespace JSC { // Types of descendents: // 14 == iK stepped up, leading exc one step further (can lead to ph recombination) // 13 == iK stepped up, next exc (nr of ph preserved, not taking possible ph recombination into account) // 12 == iK stepped up, next ext (nr ph increased, not taking possible ph recombination into account) // 11 == iK stepped down, leading exc one step further (can lead to ph recombination) // 10 == iK stepped down, next exc (nr of ph preserved, not taking possible ph recombination into account) // 9 == iK stepped down, next exc (nr ph increased, not taking possible ph recombination into account) // 8 == iK preserved, 14 and 11 (up to 2 ph recombinations) // 7 == iK preserved, 14 and 10 // 6 == iK preserved, 14 and 9 // 5 == iK preserved, 13 and 11 // 4 == iK preserved, 13 and 10 // 3 == iK preserved, 13 and 9 // 2 == iK preserved, 12 and 11 // 1 == iK preserved, 12 and 10 // 0 == iK preserved, 12 and 9 // For scanning over symmetric states, the interpretation is slightly different. // Types 14, 13 and 12 step iK up using the Ix2 on the right only, and mirrors the change on the left Ix2. // Types 11, 10 and 9 step iK down using the Ix2 on the right only, and mirrors the change on the left Ix2. // There is then no need of scanning over types 0 - 8. // By convention, types 9, 10 and 11 can call types 9 - 14; types 12-14 can only call types 12-14. bool Expect_ph_Recombination_iK_Up (string ScanIx2_label, const Vect >& OriginIx2, const Vect >& BaseScanIx2) { // This function returns true if descending further can lead to a particle-hole recombination. // The criteria which are used are: // - the active excitation has moved at least one step (so it has already created its p-h pair) // - there exists an OriginIx2 between the active Ix2 and the next Ix2 (to right or left depending on type of descendent) Vect > ScanIx2 = Return_Ix2_from_Label (ScanIx2_label, OriginIx2); // Determine the level and index of the bottom-most left-most right-moving quantum number sits: int exclevel = -1; int excindex = 0; bool excfound = false; do { exclevel++; if (exclevel == ScanIx2.size()) { // there isn't a single right-moving quantum number in ScanIx2 break; } for (int alpha = 0; alpha < ScanIx2[exclevel].size(); ++alpha) if (ScanIx2[exclevel][alpha] > BaseScanIx2[exclevel][alpha]) { excindex = alpha; excfound = true; break; } } while (!excfound); // If we haven't found an excitation, then exclevel == ScanIx2.size() and excindex = 0; if (excfound && !BaseScanIx2[exclevel].includes(ScanIx2[exclevel][excindex])) { // there exists an already dispersing excitation which isn't in Origin // Is there a possible recombination? if (excindex < ScanIx2[exclevel].size() - 1) { // a particle to the right of excitation has already move right, so there is a hole // check that there exists an occupied Ix2 in Origin sitting between the excitation and the next Ix2 to its right in ScanIx2 for (int alpha = BaseScanIx2[exclevel].size() - 1; alpha >= 0; --alpha) if (BaseScanIx2[exclevel][alpha] > ScanIx2[exclevel][excindex] && BaseScanIx2[exclevel][alpha] < ScanIx2[exclevel][excindex + 1]) { return(true); } } } // if (excfound) return(false); } // Specialization for Lieb-Liniger: bool Expect_ph_Recombination_iK_Up (string ScanIx2_label, const LiebLin_Bethe_State& OriginState) { Vect > OriginIx2here(1); OriginIx2here[0] = OriginState.Ix2; Vect > BaseScanIx2here(1); BaseScanIx2here[0] = OriginState.Ix2; return(Expect_ph_Recombination_iK_Up (ScanIx2_label, OriginIx2here, BaseScanIx2here)); } // Specialization for Heis bool Expect_ph_Recombination_iK_Up (string ScanIx2_label, const Heis_Bethe_State& OriginState) { return(Expect_ph_Recombination_iK_Up (ScanIx2_label, OriginState.Ix2, OriginState.Ix2)); } bool Expect_ph_Recombination_iK_Down (string ScanIx2_label, const Vect >& OriginIx2, const Vect >& BaseScanIx2) { // This function returns true if descending further can lead to a particle-hole recombination. // The criteria which are used are: // - the active excitation has moved at least one step (so it has already created its p-h pair) // - there exists an OriginIx2 between the active Ix2 and the next Ix2 (to right or left depending on type of descendent) Vect > ScanIx2 = Return_Ix2_from_Label (ScanIx2_label, OriginIx2); // Determine the level and index of the bottom-most right-most left-moving quantum number sits: int exclevel = -1; int excindex = 0; bool excfound = false; //cout << "Looking for exclevel and excindex for " << endl << "\tBaseIx2 = " << BaseScanIx2 << endl << "\tScanIx2 = " << ScanIx2 << endl; do { exclevel++; if (exclevel == ScanIx2.size()) { // there isn't a single left-moving quantum number in ScanIx2 break; } for (int alpha = ScanIx2[exclevel].size() - 1; alpha >= 0; --alpha) { //cout << exclevel << "\t" << alpha << "\t" << ScanIx2[exclevel][alpha] << "\t" << BaseScanIx2[exclevel][alpha] << "\t" << (ScanIx2[exclevel][alpha] < BaseScanIx2[exclevel][alpha]) << endl; if (ScanIx2[exclevel][alpha] < BaseScanIx2[exclevel][alpha]) { excindex = alpha; excfound = true; break; } } } while (!excfound); // If we haven't found an excitation, then exclevel == ScanIx2.size() and excindex = 0; if (!excfound) excindex = ScanIx2[exclevel].size() - 1; if (excfound && !BaseScanIx2[exclevel].includes(ScanIx2[exclevel][excindex])) { // there exists an already dispersing excitation which isn't in Origin // Is there a possible recombination? if (excindex > 0) { // a particle to the left of excitation has already moved left, so there is a hole // check that there exists an occupied Ix2 in Origin sitting between the excitation and the next Ix2 to its left in ScanIx2 for (int alpha = 0; alpha < BaseScanIx2[exclevel].size(); ++alpha) if (BaseScanIx2[exclevel][alpha] > ScanIx2[exclevel][excindex - 1] && BaseScanIx2[exclevel][alpha] < ScanIx2[exclevel][excindex]) { return(true); } } } // if (excfound) return(false); } // Specialization for Lieb-Liniger: bool Expect_ph_Recombination_iK_Down (string ScanIx2_label, const LiebLin_Bethe_State& OriginState) { Vect > OriginIx2here(1); OriginIx2here[0] = OriginState.Ix2; Vect > BaseScanIx2here(1); BaseScanIx2here[0] = OriginState.Ix2; return(Expect_ph_Recombination_iK_Down (ScanIx2_label, OriginIx2here, BaseScanIx2here)); } // Specialization for Heis bool Expect_ph_Recombination_iK_Down (string ScanIx2_label, const Heis_Bethe_State& OriginState) { return(Expect_ph_Recombination_iK_Down (ScanIx2_label, OriginState.Ix2, OriginState.Ix2)); } /* template void Descend_and_Compute_for_Fixed_Base (char whichDSF, Tstate& AveragingState, Tstate& BaseScanState, Tstate& ScanState, int type_required, int iKmin, int iKmax, int iKmod, //Scan_Thread_List& paused_thread_list, //Scan_Thread_Set& paused_thread_set, Scan_Thread_Data& paused_thread_data, //thresholdremoved DP& running_scan_threshold, //DP ref_abs_data_value, DP& ph_cost, int Max_Secs, DP sumrule_factor, DP Chem_Pot, Scan_Info& scan_info, fstream& RAW_outfile, fstream& INADM_outfile, int& ninadm, fstream& CONV0_outfile, int& nconv0, fstream& STAT_outfile) { //cout << "Calling descent with type_required " << type_required << " on state " << ScanState.label << "\t" << Return_Ix2_from_Label(ScanState.label, AveragingState.Ix2) << endl; //cout << "Calling descent with type_required " << type_required << " on state " << ScanState.label << endl; ScanState.Compute_Momentum(); Vect desc_label; // ++G_7 logic bool disperse_only_current_exc_up = false; if (type_required == 14 || type_required == 8 || type_required == 7 || type_required == 6) disperse_only_current_exc_up = true; bool preserve_nexc_up = false; if (type_required == 13 || type_required == 5 || type_required == 4 || type_required == 3) preserve_nexc_up = true; bool disperse_only_current_exc_down = false; if (type_required == 11 || type_required == 8 || type_required == 5 || type_required == 2) disperse_only_current_exc_down = true; bool preserve_nexc_down = false; if (type_required == 10 || type_required == 7 || type_required == 4 || type_required == 1) preserve_nexc_down = true; if (whichDSF == 'B') { // symmetric state scanning if (type_required >= 9 && type_required <= 11) desc_label = Descendent_States_with_iK_Stepped_Down_rightIx2only (ScanState.label, BaseScanState, disperse_only_current_exc_down, preserve_nexc_down); else if (type_required >= 12 && type_required <= 14) desc_label = Descendent_States_with_iK_Stepped_Up_rightIx2only (ScanState.label, BaseScanState, disperse_only_current_exc_up, preserve_nexc_up); } else { if (type_required >= 0 && type_required <= 8) { desc_label = Descendent_States_with_iK_Preserved(ScanState.label, BaseScanState, disperse_only_current_exc_up, preserve_nexc_up, disperse_only_current_exc_down, preserve_nexc_down); } else if (type_required >= 9 && type_required <= 11) desc_label = Descendent_States_with_iK_Stepped_Down (ScanState.label, BaseScanState, disperse_only_current_exc_down, preserve_nexc_down); else if (type_required >= 12 && type_required <= 14) desc_label = Descendent_States_with_iK_Stepped_Up (ScanState.label, BaseScanState, disperse_only_current_exc_up, preserve_nexc_up); } //cout << "Found " << desc_label.size() << " descendents." << endl; //for (int is = 0; is < desc_label.size(); ++is) cout << "is " << is << "\tdesc: " << desc_label[is] << "\t" << Return_Ix2_from_Label(desc_label[is], AveragingState.Ix2) << endl; //char a; //cin >> a; //cout << "OK for descend on " << ScanState.label << " with type_required = " << type_required << endl; //cout << desc_label << endl; //Vect desc_label = desc_data.label; //Vect desc_type = desc_data.type; //bool disp_OK = false; //if (ScanState.label == "7|2:1_0|1_|0@2") { //if (ScanState.label == "64_1_63@319") { //if (ScanState.label == "32_1_-29@-33") { if (ScanState.label == LABEL_TO_CHECK) { cout << "Called Descend on state " << ScanState << endl; cout << "For type_required == " << type_required << ", found " << desc_label.size() << " descendents, "; for (int i = 0; i < desc_label.size(); ++i) { //cout << desc_label[i] << "\t"; cout << endl; ScanState.Set_to_Label (desc_label[i], BaseScanState.Ix2); ScanState.Compute_All(true); cout << ScanState << endl; } cout << "Do you want to follow one of these descendents? (y/n)" << endl; char a; cin >> a; if (a == 'y') { cout << "Which label do you want to follow?" << endl; cin >> LABEL_TO_CHECK; } } string label_here = ScanState.label; //int ScanState_iK = ScanState.iK; for (int idesc = 0; idesc < desc_label.size(); ++idesc) { //cout << "\tDealing with descendent " << idesc << " out of " << desc_label.size() << " with label " << desc_label[idesc] << endl; //cout << "\tfrom state with label " << label_here << " and of type_required " << type_required << endl; clock_t start_time_here = clock(); //if (desc_label[idesc] == "64_2_0yvv7") { if (false) { cout << "Found " << desc_label[idesc] << " as descendent of type " << type_required << " of " << label_here << endl; ScanState.Set_to_Label (label_here, BaseScanState.Ix2); cout << ScanState.Ix2 << endl; //cout << "Found " << desc_label.size() << " descendents, " << endl; //for (int i = 0; i < desc_label.size(); ++i) cout << desc_label[i] << "\t"; cout << endl; ScanState.Set_to_Label (desc_label[idesc], BaseScanState.Ix2); cout << ScanState.Ix2 << endl; //ScanState.Compute_All(true); //cout << "Resulting Ix2: " << ScanState.Ix2 << endl; //cout << ScanState << endl; //cout << "Admissible: " << ScanState.Check_Admissibility(whichDSF) << endl; //char a; cin >> a; } ScanState.Set_to_Label (desc_label[idesc], BaseScanState.Ix2); bool admissible = ScanState.Check_Admissibility(whichDSF); DP data_value = 0.0; scan_info.Ndata++; ScanState.conv = false; ScanState.Compute_Momentum(); // since momentum is used as forced descent criterion if (admissible) { ScanState.Compute_All (idesc == 0); //ScanState.Compute_All (true); //scan_info.Ndata++; if (ScanState.conv) { scan_info.Ndata_conv++; // Put momentum in fundamental window, if possible: int iKexc = ScanState.iK - AveragingState.iK; while (iKexc > iKmax && iKexc - iKmod >= iKmin) iKexc -= iKmod; while (iKexc < iKmin && iKexc + iKmod <= iKmax) iKexc += iKmod; data_value = Compute_Matrix_Element_Contrib (whichDSF, iKmin, iKmax, ScanState, AveragingState, Chem_Pot, RAW_outfile); if (iKexc >= iKmin && iKexc <= iKmax) scan_info.sumrule_obtained += data_value*sumrule_factor; //cout << "data_value found = " << data_value * sumrule_factor << endl; // Uncomment line below if .stat file is desired: //STAT_outfile << setw(20) << label_here << "\t" << setw(5) << type_required << "\t" << setw(16) << std::scientific << running_scan_threshold << "\t" << setw(20) << ScanState.label << "\t" << setw(16) << data_value << "\t" << setw(16) << std::fixed << setprecision(8) << data_value/running_scan_threshold << endl; } // if (ScanState.conv) else { if (nconv0++ < 1000) CONV0_outfile << setw(25) << ScanState.label << setw(25) << ScanState.diffsq << setw(5) << ScanState.Check_Rapidities() << setw(25) << ScanState.String_delta() << endl; scan_info.Ndata_conv0++; //cout << "State did not converge." << endl; } } // if (admissible) else { if (ninadm++ < 1000000) INADM_outfile << ScanState.label << endl; scan_info.Ninadm++; //cout << "State was inadmissible." << endl; // Set data_value to enable continued scanning later on: //thresholdremoved data_value = 0.1* running_scan_threshold; } clock_t stop_time_here = clock(); scan_info.CPU_ticks += stop_time_here - start_time_here; Tstate state_to_descend; state_to_descend = ScanState; // for checking ScanState.Compute_Momentum(); // Put momentum in fundamental window, if possible: int iKexc = ScanState.iK - AveragingState.iK; while (iKexc > iKmax && iKexc - iKmod >= iKmin) iKexc -= iKmod; while (iKexc < iKmin && iKexc + iKmod <= iKmax) iKexc += iKmod; // ++G_7 logic // Momentum-preserving are only descended to momentum-preserving. // Momentum-increasing are only descended to momentum-preserving and momentum-increasing. // Momentum-decreasing are only descended to momentum-preserving and momentum-decreasing. Vect allowed(false, 15); if (whichDSF == 'B') { // We scan over symmetric states. Only types 14 down to 9 are allowed. if (type_required >= 9 && type_required <= 11) { // iK stepped down on rightIx2; step further up or down allowed[9] = true; allowed[10] = true; allowed[11] = true; allowed[12] = true; allowed[13] = true; allowed[14] = true; } else if (type_required >= 12 && type_required <= 14) { // iK stepped up on rightIx2; only step further up allowed[12] = true; allowed[13] = true; allowed[14] = true; } } else { if (type_required >= 0 && type_required <= 8) { // momentum-preserving allowed[0] = (iKexc >= iKmin && iKexc <= iKmax); allowed[9] = false; allowed[12] = false; } if (type_required >= 9 && type_required <= 11) { // momentum-decreasing allowed[0] = (iKexc >= iKmin && iKexc <= iKmax); allowed[9] = (iKexc > iKmin); allowed[12] = false; } if (type_required >= 12 && type_required <= 14) { // momentum-increasing allowed[0] = (iKexc >= iKmin && iKexc <= iKmax); allowed[9] = false; allowed[12] = (iKexc < iKmax); } // The others are just copies of the ones above: allowed[1] = allowed[0]; allowed[2] = allowed[0]; allowed[3] = allowed[0]; allowed[4] = allowed[0]; allowed[5] = allowed[0]; allowed[6] = allowed[0]; allowed[7] = allowed[0]; allowed[8] = allowed[0]; allowed[10] = allowed[9]; allowed[11] = allowed[9]; allowed[13] = allowed[12]; allowed[14] = allowed[12]; } for (int type_required_here = 0; type_required_here < 15; ++type_required_here) { if (!allowed[type_required_here]) continue; // Reset ScanState to what it was, if change on first pass if (type_required_here > 0) ScanState = state_to_descend; // We determine if we carry on scanning based on the data_value obtained, or forcing conditions: // Forcing conditions: //if (!admissible || Force_Descent(whichDSF, ScanState, AveragingState, type_required_here, iKmod, Chem_Pot)) ////data_value = 1.01 * running_scan_threshold/ph_cost; // force for all types of desc //data_value = 1.01 * running_scan_threshold; // only force for no new ph pairs ////data_value = 1.0; // force for all types of desc // If we're sitting out of the iKmin & iKmax window, stop: //if (iKmin != iKmax && (ScanState.iK - AveragingState.iK > iKmax || ScanState.iK - AveragingState.iK < iKmin)) data_value = 0.0; //if (abs(data_value) * (type_required_here != 2 ? 1.0 : ph_cost) > running_scan_threshold //if ((abs(data_value) > running_scan_threshold //|| Nr_ph_Recombinations_Possible (ScanState.label, BaseScanState, type_required_here) > 0) //DP expected_abs_data_value = abs(data_value)/pow(ph_cost, DP(Nr_ph_Recombinations_Possible (ScanState.label, BaseScanState, type_required_here))); DP expected_abs_data_value = abs(data_value); //++G_7 logic if ((type_required_here == 14 || type_required_here == 8 || type_required_here == 7 || type_required_here == 6) && Expect_ph_Recombination_iK_Up (ScanState.label, BaseScanState)) expected_abs_data_value /= ph_cost; if (type_required_here == 12 || type_required_here == 2 || type_required_here == 1 || type_required_here == 0) expected_abs_data_value *= ph_cost; if ((type_required_here == 11 || type_required_here == 8 || type_required_here == 5 || type_required_here == 2) && Expect_ph_Recombination_iK_Down (ScanState.label, BaseScanState)) expected_abs_data_value /= ph_cost; if (type_required_here == 9 || type_required_here == 6 || type_required_here == 3 || type_required_here == 0) expected_abs_data_value *= ph_cost; //cout << "\tIncluding thread " << expected_abs_data_value << "\t" << ScanState.label << "\t" << type_required_here << endl; //paused_thread_set.Include_Thread (expected_abs_data_value, ScanState.label, type_required_here); paused_thread_data.Include_Thread (expected_abs_data_value, ScanState.label, type_required_here); //cout << "\tDone including thread." << endl; } // for type_required_here //cout << "\tFinished with descendent " << idesc << " out of " << desc_label.size() << " with label " << desc_label[idesc] << endl; //cout << "\tfrom state with label " << label_here << endl; } // for idesc //cout << "Finished Descend on state " << endl << ScanState.label << endl; return; } */ template Scan_Info General_Scan (char whichDSF, int iKmin, int iKmax, int iKmod, DP kBT, Tstate& AveragingState, Tstate& SeedScanState, string defaultScanStatename, int Max_Secs, DP target_sumrule, bool refine, int paralevel, Vect rank, Vect nr_processors) { // Performs the scan over excited states, writing data to file. // AveragingState is the state on which the correlations are calculated. // SeedScanState is the originator of all scan states. // This distinction is kept to allow for quenches and finite temperatures. // This function is also called by the parallel implementation of ABACUS. // In this case, file names carry a rank and nr_processors suffix. // In fact, the parallelization can be done in incremental levels. // If paralevel == 0, the run is serial. // If paralevel == n, the run is parallelized in a tree with n levels of branching. // A paralevel == 1 branching's files have a suffix of the form "_3_8", meaning that this is the rank 3 out of 8 processors. // A paralevel == 2 branching's files have a suffix of the form "_3_8_2_8", meaning that this is the rank 2 out of 8 subscan of the _3_8 scan. //clock_t start_time = clock(); //clock_t current_time = clock(); //bool in_parallel = (nr_processors > 1); bool in_parallel = (paralevel > 0); if (in_parallel && (rank.size() != paralevel || nr_processors.size() != paralevel)) { cout << "paralevel = " << paralevel << "\trank.size() = " << rank.size() << "\tnr_processors.size() = " << nr_processors.size() << endl; cout << "rank = " << rank << endl; cout << "nr_processors = " << nr_processors << endl; JSCerror("Inconsistent paralevel, rank or nr_processors in General_Scan."); } if (in_parallel && !refine) JSCerror("Must refine when using parallel ABACUS++"); DP ph_cost = Particle_Hole_Excitation_Cost (whichDSF, AveragingState); // expected cost on data_value of adding a particle-hole excitation. int Max_Secs_used = int(0.9 * Max_Secs); // we don't start any new ithread loop beyond this point int Max_Secs_alert = int(0.95 * Max_Secs); // we break any ongoing ithread loop beyond this point //clock_t start_time_local = clock(); stringstream filenameprefix; Data_File_Name (filenameprefix, whichDSF, iKmin, iKmax, kBT, AveragingState, SeedScanState, defaultScanStatename); if (in_parallel) for (int r = 0; r < paralevel; ++r) filenameprefix << "_" << rank[r] << "_" << nr_processors[r]; string prefix = filenameprefix.str(); stringstream filenameprefix_prevparalevel; // without the rank and nr_processors of the highest paralevel Data_File_Name (filenameprefix_prevparalevel, whichDSF, iKmin, iKmax, kBT, AveragingState, SeedScanState, defaultScanStatename); if (in_parallel) for (int r = 0; r < paralevel - 1; ++r) filenameprefix << "_" << rank[r] << "_" << nr_processors[r]; string prefix_prevparalevel = filenameprefix_prevparalevel.str(); stringstream RAW_stringstream; string RAW_string; stringstream INADM_stringstream; string INADM_string; stringstream CONV0_stringstream; string CONV0_string; stringstream STAT_stringstream; string STAT_string; stringstream LOG_stringstream; string LOG_string; stringstream THR_stringstream; string THR_string; stringstream THRDIR_stringstream; string THRDIR_string; stringstream SRC_stringstream; string SRC_string; //stringstream FSR_stringstream; string FSR_string; stringstream SUM_stringstream; string SUM_string; //stringstream SUM_prevparalevel_stringstream; string SUM_prevparalevel_string; RAW_stringstream << prefix << ".raw"; INADM_stringstream << prefix << ".inadm"; CONV0_stringstream << prefix << ".conv0"; STAT_stringstream << prefix << ".stat"; LOG_stringstream << prefix << ".log"; THR_stringstream << prefix << ".thr"; THRDIR_stringstream << prefix << "_thrdir"; SRC_stringstream << prefix << ".src"; //FSR_stringstream << prefix << ".fsr"; SUM_stringstream << prefix << ".sum"; //SUM_prevparalevel_stringstream << prefix_prevparalevel << ".sum"; RAW_string = RAW_stringstream.str(); const char* RAW_Cstr = RAW_string.c_str(); INADM_string = INADM_stringstream.str(); const char* INADM_Cstr = INADM_string.c_str(); CONV0_string = CONV0_stringstream.str(); const char* CONV0_Cstr = CONV0_string.c_str(); STAT_string = STAT_stringstream.str(); const char* STAT_Cstr = STAT_string.c_str(); LOG_string = LOG_stringstream.str(); const char* LOG_Cstr = LOG_string.c_str(); THR_string = THR_stringstream.str(); const char* THR_Cstr = THR_string.c_str(); SRC_string = SRC_stringstream.str(); const char* SRC_Cstr = SRC_string.c_str(); //FSR_string = FSR_stringstream.str(); const char* FSR_Cstr = FSR_string.c_str(); SUM_string = SUM_stringstream.str(); const char* SUM_Cstr = SUM_string.c_str(); //SUM_prevparalevel_string = SUM_prevparalevel_stringstream.str(); const char* SUM_prevparalevel_Cstr = SUM_prevparalevel_string.c_str(); THRDIR_string = THRDIR_stringstream.str(); fstream RAW_outfile; if (!refine || in_parallel) RAW_outfile.open(RAW_Cstr, fstream::out | fstream::trunc); else RAW_outfile.open(RAW_Cstr, fstream::out | fstream::app); if (RAW_outfile.fail()) { cout << RAW_Cstr << endl; JSCerror("Could not open RAW_outfile... "); } RAW_outfile.precision(16); fstream INADM_outfile; if (!refine || in_parallel) INADM_outfile.open(INADM_Cstr, fstream::out | fstream::trunc); else INADM_outfile.open(INADM_Cstr, fstream::out | fstream::app); if (INADM_outfile.fail()) JSCerror("Could not open INADM_outfile... "); INADM_outfile.precision(16); fstream CONV0_outfile; if (!refine || in_parallel) CONV0_outfile.open(CONV0_Cstr, fstream::out | fstream::trunc); else CONV0_outfile.open(CONV0_Cstr, fstream::out | fstream::app); if (CONV0_outfile.fail()) JSCerror("Could not open CONV0_outfile... "); CONV0_outfile.precision(16); fstream STAT_outfile; if (!refine || in_parallel) STAT_outfile.open(STAT_Cstr, fstream::out | fstream::trunc); else STAT_outfile.open(STAT_Cstr, fstream::out | fstream::app); if (STAT_outfile.fail()) JSCerror("Could not open STAT_outfile... "); STAT_outfile.precision(8); ofstream LOG_outfile; if (!in_parallel) { if (!refine) LOG_outfile.open(LOG_Cstr, fstream::out | fstream::trunc); else LOG_outfile.open(LOG_Cstr, fstream::out | fstream::app); if (LOG_outfile.fail()) JSCerror("Could not open LOG_outfile... "); LOG_outfile.precision(16); } else { // in_parallel LOG_outfile.open(LOG_Cstr, fstream::out | fstream::trunc); if (LOG_outfile.fail()) JSCerror("Could not open LOG_outfile... "); LOG_outfile.precision(16); //LOG_outfile << endl; } Scan_Info scan_info; //Scan_Thread_Set paused_thread_set; //Scan_Thread_Set paused_thread_set_this_run; if (!refine) mkdir(THRDIR_string.c_str(), S_IRWXU | S_IRWXG | S_IRWXO); Scan_Thread_Data paused_thread_data (THRDIR_string, refine); if (refine) { //paused_thread_set.Load(THR_Cstr); paused_thread_data.Load(); if (!in_parallel) scan_info.Load(SRC_Cstr); } Scan_Info scan_info_before = scan_info; // for LOG file Scan_Info scan_info_before_descent; Scan_Info scan_info_obtained_in_descent; Scan_State_List ScanStateList (whichDSF, SeedScanState); ScanStateList.Populate_List(whichDSF, SeedScanState); if (refine && !in_parallel) ScanStateList.Load_Info (SUM_Cstr); else if (in_parallel && rank.sum() == 0) {}; // do nothing, keep the info in the higher .sum file! DP Chem_Pot = Chemical_Potential (AveragingState); DP sumrule_factor = Sumrule_Factor (whichDSF, AveragingState, Chem_Pot, iKmin, iKmax); //clock_t stop_time_local = clock(); // Now go for it ! bool at_least_one_new_flag_raised = false; int Ndata_previous_cycle = 0; int ninadm = 0; // number of inadmissible states for which we save some info in .inadm file. Save first 1000. int nconv0 = 0; // number of unconverged states for which we save some info in .conv0 file. Save first 1000. double start_time_omp = omp_get_wtime(); double current_time_omp = omp_get_wtime(); #pragma omp parallel do { int omp_thread_nr = omp_get_thread_num(); if ((paused_thread_data.lowest_il_with_nthreads_neq_0 == paused_thread_data.nlists - 1) && omp_thread_nr > 0) { double start_time_wait = omp_get_wtime(); //cout << "omp_thread " << omp_thread_nr << " sleeping for 5 seconds... " << endl; //sleep(5); // give time to master omp_thread to populate threads double stop_time_wait; do { for (int i = 0; i < 100000; ++i) { } stop_time_wait = omp_get_wtime(); } while (stop_time_wait - start_time_wait < 5.0); //cout << "omp_thread " << omp_thread_nr << " restarting" << endl; } double start_time_cycle_omp = omp_get_wtime(); at_least_one_new_flag_raised = false; //if (!in_parallel) { // flag raising not allowed in parallel mode //if (!in_parallel || rank == 0) { // flag raising only allowed if not in parallel mode, or if rank == 0 //if (!in_parallel || rank.sum() == 0) { // flag raising only allowed if not in parallel mode, or if rank == 0 at all paralevels //if (!in_parallel) { // flag raising not allowed in parallel mode #pragma omp master { //clock_t start_time_flags = clock(); double start_time_flags = omp_get_wtime(); // First flag the new base/type 's that we need to include: //thresholdremoved ScanStateList.Raise_Scanning_Flags (running_scan_threshold); ScanStateList.Raise_Scanning_Flags (exp(-paused_thread_data.logscale * paused_thread_data.lowest_il_with_nthreads_neq_0)); //cout << "flags: " << endl << ScanStateList.flag_for_scan << endl; // Get these base/type started: for (int i = 0; i < ScanStateList.ndef; ++i) { if (ScanStateList.flag_for_scan[i] && ScanStateList.info[i].Ndata == 0 && !ScanStateList.scan_attempted[i]) { Scan_Info scan_info_flags; at_least_one_new_flag_raised = true; ScanStateList.scan_attempted[i] = true; Tstate ScanState; //scan_info_before_descent = scan_info; ScanState = ScanStateList.State[i]; //cout << "ScanStateList.State[i] = " << ScanState << endl; DP data_value = -1.0; bool admissible = ScanState.Check_Admissibility(whichDSF); if (admissible) { ScanState.Compute_All(true); if (ScanState.conv) { // Put momentum in fundamental window, if possible: int iKexc = ScanState.iK - AveragingState.iK; while (iKexc > iKmax && iKexc - iKmod >= iKmin) iKexc -= iKmod; while (iKexc < iKmin && iKexc + iKmod <= iKmax) iKexc += iKmod; //if (iKexc >= iKmin && iKexc <= iKmax) RAW_outfile << endl; //data_value = Compute_Matrix_Element_Contrib (whichDSF, iKmin, iKmax, ScanState, AveragingState, Chem_Pot, RAW_outfile); stringstream rawfile_entry; data_value = Compute_Matrix_Element_Contrib (whichDSF, iKmin, iKmax, ScanState, AveragingState, Chem_Pot, rawfile_entry); { #pragma omp critical RAW_outfile << rawfile_entry.str(); } //cout << "data_value for ScanState.label " << ScanState.label << " = " << data_value << endl; { #pragma omp critical if (iKexc >= iKmin && iKexc <= iKmax) { scan_info_flags.Ndata++; scan_info_flags.Ndata_conv++; scan_info_flags.sumrule_obtained += data_value*sumrule_factor; } } //cout << data_value * sumrule_factor << endl; // If we force descent: modify data_value by hand so that descent is forced on next scanning pass //if (Force_Descent(whichDSF, ScanState, AveragingState, iKmod, Chem_Pot) && ScanState.iK - AveragingState.iK < iKmax && Sca nState.iK - AveragingState.iK > iKmin) //if (Force_Descent(whichDSF, ScanState, AveragingState, iKmod, Chem_Pot)) for (int itype = 0; itype < 15; ++itype) { DP data_value_used = 0.1* exp(-paused_thread_data.logscale * JSC::min(0, paused_thread_data.lowest_il_with_nthreads_neq_0)); if (Force_Descent(whichDSF, ScanState, AveragingState, itype, iKmod, Chem_Pot)) //data_value = 0.1* exp(-paused_thread_data.logscale * paused_thread_data.lowest_il_with_nthreads_neq_0); data_value = data_value_used; } // ++G_7 logic Vect allowed(false, 15); if (whichDSF == 'B') { // symmetric state scanning allowed[9] = true; allowed[10] = true; allowed[11] = true; allowed[12] = true; allowed[13] = true; allowed[14] = true; } else { allowed[0] = (iKexc >= iKmin && iKexc <= iKmax); allowed[1] = allowed[0]; allowed[2] = allowed[0]; allowed[3] = allowed[0]; allowed[4] = allowed[0]; allowed[5] = allowed[0]; allowed[6] = allowed[0]; allowed[7] = allowed[0]; allowed[8] = allowed[0]; //allowed[9] = (iKexc <= 0 && iKexc > iKmin); allowed[9] = (iKexc > iKmin); allowed[10] = allowed[9]; allowed[11] = allowed[9]; //allowed[12] = (iKexc >= 0 && iKexc < iKmax); allowed[12] = (iKexc < iKmax); allowed[13] = allowed[12]; allowed[14] = allowed[12]; } for (int type_required_here = 0; type_required_here < 15; ++type_required_here) { if (!allowed[type_required_here]) continue; // All cases here are such that the ScanState hasn't been descended yet, so we simply use data_value as expected data value: //paused_thread_set_this_run.Include_Thread (abs(data_value), ScanState.label, type_required_here); { #pragma omp critical paused_thread_data.Include_Thread (abs(data_value), ScanState.label, type_required_here); } } } // if (ScanState.conv) else { if (nconv0++ < 1000) CONV0_outfile << setw(25) << ScanState.label << setw(25) << ScanState.diffsq << setw(5) << ScanState.Check_Rapidities() << setw(25) << ScanState.String_delta() << endl; scan_info_flags.Ndata++; scan_info_flags.Ndata_conv0++; } } // if admissible else { // if inadmissible, modify data_value by hand so that descent is forced on next scanning pass if (ninadm++ < 10000000) INADM_outfile << ScanState.label << endl; scan_info_flags.Ndata++; scan_info_flags.Ninadm++; // Put momentum in fundamental window, if possible: int iKexc = ScanState.iK - AveragingState.iK; while (iKexc > iKmax && iKexc - iKmod >= iKmin) iKexc -= iKmod; while (iKexc < iKmin && iKexc + iKmod <= iKmax) iKexc += iKmod; //thresholdremoved DP data_value = 2.0* running_scan_threshold; //DP data_value = 2.0 * exp(-paused_thread_data.logscale * paused_thread_data.lowest_il_with_nthreads_neq_0); //DP data_value = 0.1* running_scan_threshold; DP data_value = 1.0e-32; for (int itype = 0; itype < 15; ++itype) if (Force_Descent(whichDSF, ScanState, AveragingState, itype, iKmod, Chem_Pot)) data_value = 0.1* exp(-paused_thread_data.logscale * paused_thread_data.lowest_il_with_nthreads_neq_0); // ++G_7 logic Vect allowed(false, 15); if (whichDSF == 'B') { // We scan over symmetric states. Only types 14 down to 9 are allowed. allowed[9] = true; allowed[10] = true; allowed[11] = true; allowed[12] = true; allowed[13] = true; allowed[14] = true; } else { allowed[0] = (iKexc >= iKmin && iKexc <= iKmax); allowed[1] = allowed[0]; allowed[2] = allowed[0]; allowed[3] = allowed[0]; allowed[4] = allowed[0]; allowed[5] = allowed[0]; allowed[6] = allowed[0]; allowed[7] = allowed[0]; allowed[8] = allowed[0]; //allowed[9] = (iKexc <= 0 && iKexc > iKmin); allowed[9] = (iKexc > iKmin); allowed[10] = allowed[9]; allowed[11] = allowed[9]; //allowed[12] = (iKexc >= 0 && iKexc < iKmax); allowed[12] = (iKexc < iKmax); allowed[13] = allowed[12]; allowed[14] = allowed[12]; } for (int type_required_here = 0; type_required_here < 15; ++type_required_here) { if (!allowed[type_required_here]) continue; //paused_thread_set_this_run.Include_Thread (abs(data_value), ScanState.label, type_required_here); { #pragma omp critical paused_thread_data.Include_Thread (abs(data_value), ScanState.label, type_required_here); } } } // inadmissible //scan_info_obtained_in_descent = scan_info; //scan_info_obtained_in_descent -= scan_info_before_descent; scan_info_flags.TT += omp_get_wtime() - start_time_flags; // Put this info into the appropriate ScanStateList.info { #pragma omp critical //ScanStateList.Include_Info(scan_info_obtained_in_descent, ScanStateList.base_label[i]); //cout << "Including info_flags: " << scan_info_flags << endl; ScanStateList.Include_Info(scan_info_flags, ScanStateList.base_label[i]); scan_info += scan_info_flags; } //cout << "Done with state " << ScanState.label << endl; } // if flag_for_scan } // for i //clock_t stop_time_flags = clock(); //scan_info.CPU_ticks += stop_time_flags - start_time_flags; //scan_info.TT += (stop_time_flags - start_time_flags)/CLOCKS_PER_SEC; //scan_info.TT += omp_get_wtime() - start_time_flags; //} // if (!in_parallel || rank == 0) } // #pragma omp master //cout << "Done raising flags." << endl; // Now we deal with the previously existing paused threads: //if (scan_info.CPU_ticks < ((long long int) Max_Secs) * ((long long int) CLOCKS_PER_SEC)) { //Vect threads_to_do = paused_thread_data.Extract_Next_Scan_Threads(); Vect threads_to_do; int il_to_do = paused_thread_data.lowest_il_with_nthreads_neq_0; // for resaving threads in case we're out of time { #pragma omp critical threads_to_do = paused_thread_data.Extract_Next_Scan_Threads(); //threads_to_do = paused_thread_data.Extract_Next_Scan_Threads(100); } //cout << "Size of threads_to_do: " << threads_to_do.size() << endl; //for (int i = 0; i < threads_to_do.size(); ++i) cout << threads_to_do[i].label << "\t" << threads_to_do[i].type << "\t"; //cout << endl; int ithread; //omp1#pragma omp parallel { //omp1#pragma omp for for (ithread = 0; ithread < threads_to_do.size(); ++ithread) { //cout << "\tithread = " << ithread << endl; //scan_info_before_descent = scan_info; //int tid = omp_get_thread_num(); //{ //#pragma omp critical //cout << "Thread " << tid << " handling ithread " << ithread << " out of " << threads_to_do.size() << "\t" << threads_to_do[ithread].label << "\t" << threads_to_do[ithread].type << endl; //} Scan_Info scan_info_this_ithread; double start_time_this_ithread = omp_get_wtime(); // If we don't have time anymore, resave the threads instead of computing them: if (start_time_this_ithread - start_time_omp > Max_Secs_alert) { for (int ith = ithread; ith < threads_to_do.size(); ++ith) { #pragma omp critical paused_thread_data.Include_Thread (il_to_do, threads_to_do[ith].label, threads_to_do[ith].type); } break; // jump out of ithread loop } Tstate ScanState; { #pragma omp critical ScanState = ScanStateList.Return_State(Extract_Base_Label(threads_to_do[ithread].label)); } Tstate BaseScanState; BaseScanState = ScanState; //cout << "Setting to label = " << threads_to_do[ithread].label << ", descending type " << threads_to_do[ithread].type << endl; ScanState.Set_to_Label(threads_to_do[ithread].label, BaseScanState.Ix2); //cout << "ScanState after setting label: " << threads_to_do[ithread].label << endl << ScanState << endl; //cout << "Calling Descend_and_Compute with type " << paused_thread_list.type[ithread] << " on state" << endl << ScanState << endl; /* Descend_and_Compute_for_Fixed_Base (whichDSF, AveragingState, BaseScanState, ScanState, //paused_thread_set.type[ilist][ithread], iKmin, iKmax, iKmod, threads_to_do[ithread].type, iKmin, iKmax, iKmod, //paused_thread_set_this_run, running_scan_threshold, paused_thread_data, //thresholdremoved running_scan_threshold, //paused_thread_set[ilist].abs_data_value[ithread], ph_cost, Max_Secs_used, sumrule_factor, Chem_Pot, scan_info, RAW_outfile, INADM_outfile, ninadm, CONV0_outfile, nconv0, STAT_outfile); */ // STARTING Descend_and_Compute block: int type_required = threads_to_do[ithread].type; ScanState.Compute_Momentum(); Vect desc_label; // ++G_7 logic bool disperse_only_current_exc_up = false; if (type_required == 14 || type_required == 8 || type_required == 7 || type_required == 6) disperse_only_current_exc_up = true; bool preserve_nexc_up = false; if (type_required == 13 || type_required == 5 || type_required == 4 || type_required == 3) preserve_nexc_up = true; bool disperse_only_current_exc_down = false; if (type_required == 11 || type_required == 8 || type_required == 5 || type_required == 2) disperse_only_current_exc_down = true; bool preserve_nexc_down = false; if (type_required == 10 || type_required == 7 || type_required == 4 || type_required == 1) preserve_nexc_down = true; if (whichDSF == 'B') { // symmetric state scanning if (type_required >= 9 && type_required <= 11) desc_label = Descendent_States_with_iK_Stepped_Down_rightIx2only (ScanState.label, BaseScanState, disperse_only_current_exc_down, preserve_nexc_down); else if (type_required >= 12 && type_required <= 14) desc_label = Descendent_States_with_iK_Stepped_Up_rightIx2only (ScanState.label, BaseScanState, disperse_only_current_exc_up, preserve_nexc_up); } else { if (type_required >= 0 && type_required <= 8) { desc_label = Descendent_States_with_iK_Preserved(ScanState.label, BaseScanState, disperse_only_current_exc_up, preserve_nexc_up, disperse_only_current_exc_down, preserve_nexc_down); } else if (type_required >= 9 && type_required <= 11) desc_label = Descendent_States_with_iK_Stepped_Down (ScanState.label, BaseScanState, disperse_only_current_exc_down, preserve_nexc_down); else if (type_required >= 12 && type_required <= 14) desc_label = Descendent_States_with_iK_Stepped_Up (ScanState.label, BaseScanState, disperse_only_current_exc_up, preserve_nexc_up); } string label_here = ScanState.label; //int ScanState_iK = ScanState.iK; for (int idesc = 0; idesc < desc_label.size(); ++idesc) { //clock_t start_time_here = clock(); ScanState.Set_to_Label (desc_label[idesc], BaseScanState.Ix2); bool admissible = ScanState.Check_Admissibility(whichDSF); DP data_value = 0.0; //scan_info.Ndata++; //scan_info_this_ithread.Ndata++; ScanState.conv = false; ScanState.Compute_Momentum(); // since momentum is used as forced descent criterion if (admissible) { ScanState.Compute_All (idesc == 0); //ScanState.Compute_All (true); //scan_info.Ndata++; if (ScanState.conv) { //scan_info_this_ithread.Ndata_conv++; // Put momentum in fundamental window, if possible: int iKexc = ScanState.iK - AveragingState.iK; while (iKexc > iKmax && iKexc - iKmod >= iKmin) iKexc -= iKmod; while (iKexc < iKmin && iKexc + iKmod <= iKmax) iKexc += iKmod; //data_value = Compute_Matrix_Element_Contrib (whichDSF, iKmin, iKmax, ScanState, AveragingState, Chem_Pot, RAW_outfile); stringstream rawfile_entry; data_value = Compute_Matrix_Element_Contrib (whichDSF, iKmin, iKmax, ScanState, AveragingState, Chem_Pot, rawfile_entry); { #pragma omp critical RAW_outfile << rawfile_entry.str(); if (iKexc >= iKmin && iKexc <= iKmax) { scan_info_this_ithread.Ndata++; scan_info_this_ithread.Ndata_conv++; scan_info_this_ithread.sumrule_obtained += data_value*sumrule_factor; } } //if (iKexc >= iKmin && iKexc <= iKmax) scan_info_this_ithread.sumrule_obtained += data_value*sumrule_factor; //cout << "data_value found = " << data_value * sumrule_factor << endl; // Uncomment line below if .stat file is desired: //STAT_outfile << setw(20) << label_here << "\t" << setw(5) << type_required << "\t" << setw(16) << std::scientific << running_scan_threshold << "\t" << setw(20) << ScanState.label << "\t" << setw(16) << data_value << "\t" << setw(16) << std::fixed << setprecision(8) << data_value/running_scan_threshold << endl; } // if (ScanState.conv) else { if (nconv0++ < 1000) CONV0_outfile << setw(25) << ScanState.label << setw(25) << ScanState.diffsq << setw(5) << ScanState.Check_Rapidities() << setw(25) << ScanState.String_delta() << endl; //scan_info.Ndata_conv0++; scan_info_this_ithread.Ndata++; scan_info_this_ithread.Ndata_conv0++; //cout << "State did not converge." << endl; } } // if (admissible) else { if (ninadm++ < 1000000) INADM_outfile << ScanState.label << endl; //scan_info.Ninadm++; scan_info_this_ithread.Ndata++; scan_info_this_ithread.Ninadm++; //cout << "State was inadmissible." << endl; // Set data_value to enable continued scanning later on: //thresholdremoved data_value = 0.1* running_scan_threshold; } //clock_t stop_time_here = clock(); //scan_info.CPU_ticks += stop_time_here - start_time_here; //scan_info_this_ithread.CPU_ticks += stop_time_here - start_time_here; //scan_info_this_ithread.TT += (stop_time_here - start_time_here)/CLOCKS_PER_SEC; Tstate state_to_descend; state_to_descend = ScanState; // for checking ScanState.Compute_Momentum(); // Put momentum in fundamental window, if possible: int iKexc = ScanState.iK - AveragingState.iK; while (iKexc > iKmax && iKexc - iKmod >= iKmin) iKexc -= iKmod; while (iKexc < iKmin && iKexc + iKmod <= iKmax) iKexc += iKmod; // ++G_7 logic // Momentum-preserving are only descended to momentum-preserving. // Momentum-increasing are only descended to momentum-preserving and momentum-increasing. // Momentum-decreasing are only descended to momentum-preserving and momentum-decreasing. Vect allowed(false, 15); if (whichDSF == 'B') { // We scan over symmetric states. Only types 14 down to 9 are allowed. if (type_required >= 9 && type_required <= 11) { // iK stepped down on rightIx2; step further up or down allowed[9] = true; allowed[10] = true; allowed[11] = true; allowed[12] = true; allowed[13] = true; allowed[14] = true; } else if (type_required >= 12 && type_required <= 14) { // iK stepped up on rightIx2; only step further up allowed[12] = true; allowed[13] = true; allowed[14] = true; } } else { if (type_required >= 0 && type_required <= 8) { // momentum-preserving allowed[0] = (iKexc >= iKmin && iKexc <= iKmax); allowed[9] = false; allowed[12] = false; } if (type_required >= 9 && type_required <= 11) { // momentum-decreasing allowed[0] = (iKexc >= iKmin && iKexc <= iKmax); allowed[9] = (iKexc > iKmin); allowed[12] = false; } if (type_required >= 12 && type_required <= 14) { // momentum-increasing allowed[0] = (iKexc >= iKmin && iKexc <= iKmax); allowed[9] = false; allowed[12] = (iKexc < iKmax); } // The others are just copies of the ones above: allowed[1] = allowed[0]; allowed[2] = allowed[0]; allowed[3] = allowed[0]; allowed[4] = allowed[0]; allowed[5] = allowed[0]; allowed[6] = allowed[0]; allowed[7] = allowed[0]; allowed[8] = allowed[0]; allowed[10] = allowed[9]; allowed[11] = allowed[9]; allowed[13] = allowed[12]; allowed[14] = allowed[12]; } for (int type_required_here = 0; type_required_here < 15; ++type_required_here) { if (!allowed[type_required_here]) continue; // Reset ScanState to what it was, if change on first pass if (type_required_here > 0) ScanState = state_to_descend; // We determine if we carry on scanning based on the data_value obtained, or forcing conditions: // Forcing conditions: //if (!admissible || Force_Descent(whichDSF, ScanState, AveragingState, type_required_here, iKmod, Chem_Pot)) ////data_value = 1.01 * running_scan_threshold/ph_cost; // force for all types of desc //data_value = 1.01 * running_scan_threshold; // only force for no new ph pairs ////data_value = 1.0; // force for all types of desc // If we're sitting out of the iKmin & iKmax window, stop: //if (iKmin != iKmax && (ScanState.iK - AveragingState.iK > iKmax || ScanState.iK - AveragingState.iK < iKmin)) data_value = 0.0; //if (abs(data_value) * (type_required_here != 2 ? 1.0 : ph_cost) > running_scan_threshold //if ((abs(data_value) > running_scan_threshold //|| Nr_ph_Recombinations_Possible (ScanState.label, BaseScanState, type_required_here) > 0) //DP expected_abs_data_value = abs(data_value)/pow(ph_cost, DP(Nr_ph_Recombinations_Possible (ScanState.label, BaseScanState, type_required_here))); DP expected_abs_data_value = abs(data_value); //++G_7 logic if ((type_required_here == 14 || type_required_here == 8 || type_required_here == 7 || type_required_here == 6) && Expect_ph_Recombination_iK_Up (ScanState.label, BaseScanState)) expected_abs_data_value /= ph_cost; if (type_required_here == 12 || type_required_here == 2 || type_required_here == 1 || type_required_here == 0) expected_abs_data_value *= ph_cost; if ((type_required_here == 11 || type_required_here == 8 || type_required_here == 5 || type_required_here == 2) && Expect_ph_Recombination_iK_Down (ScanState.label, BaseScanState)) expected_abs_data_value /= ph_cost; if (type_required_here == 9 || type_required_here == 6 || type_required_here == 3 || type_required_here == 0) expected_abs_data_value *= ph_cost; //paused_thread_set.Include_Thread (expected_abs_data_value, ScanState.label, type_required_here); { #pragma omp critical //cout << "\tIncluding thread " << ScanState.label << "\t" << type_required_here << "\tdata_value " << data_value << "\texpected abs data value " << expected_abs_data_value << endl; paused_thread_data.Include_Thread (expected_abs_data_value, ScanState.label, type_required_here); } //cout << "\tDone including thread." << endl; } // for type_required_here //cout << "\tFinished with descendent " << idesc << " out of " << desc_label.size() << " with label " << desc_label[idesc] << endl; //cout << "\tfrom state with label " << label_here << endl; } // for idesc //cout << "Finished Descend on state " << endl << ScanState.label << endl; // FINISHED Descend_and_Compute block //cout << "Finished descending." << endl; //cout << "\tFinished descending ithread = " << ithread << endl; //scan_info_obtained_in_descent = scan_info; //scan_info_obtained_in_descent -= scan_info_before_descent; //// Put this info into the appropriate ScanStateList.info //ScanStateList.Include_Info(scan_info_obtained_in_descent, Extract_Base_Label(threads_to_do[ithread].label)); scan_info_this_ithread.TT += omp_get_wtime() - start_time_this_ithread; #pragma omp critical { scan_info += scan_info_this_ithread; //cout << "Including info_ihtread: " << scan_info_this_ithread << endl; ScanStateList.Include_Info(scan_info_this_ithread, Extract_Base_Label(threads_to_do[ithread].label)); } } // for ithread } // omp parallel region // Resynchronize all compute threads: //omp1#pragma omp barrier //cout << "Done with threads_to_do." << endl; // } // if time //start_time_local = clock(); /* if (!in_parallel) LOG_outfile << "Ndata handled up to now: " << scan_info.Ndata_conv << ". Threshold level " << paused_thread_data.lowest_il_with_nthreads_neq_0 << " " << setprecision(6) << exp(-paused_thread_data.logscale * paused_thread_data.lowest_il_with_nthreads_neq_0) << ". " << scan_info.Ndata - Ndata_previous_cycle << " new data points. Number of threads: " << paused_thread_data.nthreads_total.sum() << ". Saturation: " << setprecision(12) << scan_info.sumrule_obtained << endl; */ //int tid = omp_get_thread_num(); #pragma omp master { if (!in_parallel) LOG_outfile << "Master cycling. Ndata_conv " << scan_info.Ndata_conv << ". Threshold " << paused_thread_data.lowest_il_with_nthreads_neq_0 << " " << setw(9) << setprecision(3) << exp(-paused_thread_data.logscale * paused_thread_data.lowest_il_with_nthreads_neq_0) << ". " << setw(12) << scan_info.Ndata - Ndata_previous_cycle << " new data. Nr of threads: " << setw(14) << paused_thread_data.nthreads_total.sum() << ". Saturation: " << setprecision(12) << scan_info.sumrule_obtained << endl; Ndata_previous_cycle = scan_info.Ndata; } //stop_time_local = clock(); //current_time = clock(); //scan_info.CPU_ticks += stop_time_local - start_time_local; //#pragma omp critical //scan_info.TT += omp_get_wtime() - start_time_cycle_omp; current_time_omp = omp_get_wtime(); //int tid = omp_get_thread_num(); //if (tid == 0) cout << "current_time_omp - start_time_omp = " << current_time_omp - start_time_omp << "\t" << Max_Secs_used << endl; //if (current_time_omp - start_time_omp > Max_Secs_used) //cout << "tid " << tid << " exiting." << endl; //} while (scan_info.CPU_ticks < ((long long int) Max_Secs_used) * ((long long int) CLOCKS_PER_SEC) //} while (current_time - start_time < ((long long int) Max_Secs_used) * ((long long int) CLOCKS_PER_SEC) } while (current_time_omp - start_time_omp < Max_Secs_used && scan_info.sumrule_obtained < target_sumrule //&& paused_thread_list.Highest_abs_data_value(0.0, 1.0e+10) > 1.0e-30 //&& !(all_threads_zero_previous_cycle && all_threads_zero_current_cycle && !at_least_one_new_flag_raised) //thresholdremoved && running_scan_threshold > 1.0e-10*MACHINE_EPS ); // This closes the #pragram omp parallel block RAW_outfile.close(); INADM_outfile.close(); CONV0_outfile.close(); STAT_outfile.close(); //scan_info.CPU_ticks_TOT += scan_info.CPU_ticks; scan_info.Save(SRC_Cstr); Scan_Info scan_info_refine = scan_info; scan_info_refine -= scan_info_before; if (!in_parallel) { if (scan_info.sumrule_obtained >= target_sumrule) LOG_outfile << endl << "Achieved sumrule saturation of " << scan_info.sumrule_obtained << "\t(target was " << target_sumrule << ")." << endl << endl; //thresholdremoved //if (running_scan_threshold < MACHINE_EPS) //LOG_outfile << endl << "Stopping because threshold lower than machine precision. " << endl << endl; //thresholdremoved if (!refine) LOG_outfile << "Main run info: " << scan_info << endl << "Latest running_scan_threshold = " << running_scan_threshold << endl; if (!refine) { LOG_outfile << "Main run info: " << scan_info << endl; LOG_outfile << "Latest threshold level " << paused_thread_data.lowest_il_with_nthreads_neq_0 << " " << std::scientific << setprecision(3) << exp(-paused_thread_data.logscale * paused_thread_data.lowest_il_with_nthreads_neq_0) << endl; } else if (refine) { //thresholdremoved LOG_outfile << "Refining info: " << scan_info_refine << endl << "Latest running_scan_threshold = " << running_scan_threshold << endl LOG_outfile << "Refining info: " << scan_info_refine << endl; LOG_outfile << "Latest threshold level " << paused_thread_data.lowest_il_with_nthreads_neq_0 << " " << std::scientific << setprecision(3) << exp(-paused_thread_data.logscale * paused_thread_data.lowest_il_with_nthreads_neq_0) << endl; LOG_outfile << "Resulting info: " << scan_info << endl; } LOG_outfile << "Code version " << JSC_VERSION << ", copyright J.-S. Caux." << endl << endl; LOG_outfile.close(); } else { // in_parallel //thresholdremoved //if (running_scan_threshold < MACHINE_EPS) //LOG_outfile << "rank " << rank << " out of " << nr_processors << " processors: " // << "Stopping because threshold lower than machine precision. " << endl << endl; LOG_outfile << "rank " << rank << " out of " << nr_processors << " processors: " //thresholdremoved << "run info: " << scan_info << endl << "Latest running_scan_threshold = " << running_scan_threshold << endl; << "run info: " << scan_info << endl << "Latest threshold = " << exp(-paused_thread_data.logscale * paused_thread_data.lowest_il_with_nthreads_neq_0) << endl; } //if (paused_thread_list.dim < 1000000) paused_thread_list.Order_in_abs_data_value(); //paused_thread_list.Save(THR_Cstr); //paused_thread_set.Save(THR_Cstr); paused_thread_data.Save(); ScanStateList.Order_in_SRC (); //cout << "Saving info: " << endl; for (int idef = 0; idef < ScanStateList.ndef; ++idef) cout << ScanStateList.info[idef] << endl; ScanStateList.Save_Info (SUM_Cstr); // Evaluate f-sumrule: //if (!fixed_iK && !in_parallel) if (whichDSF != 'q') Evaluate_F_Sumrule (whichDSF, AveragingState, Chem_Pot, RAW_Cstr, FSR_Cstr); //if (iKmin != iKmax && !in_parallel) if (whichDSF != 'q') Evaluate_F_Sumrule (whichDSF, AveragingState, Chem_Pot, iKmin, iKmax, RAW_Cstr, FSR_Cstr); //if (iKmin != iKmax && !in_parallel ) if (whichDSF != 'q') Evaluate_F_Sumrule (prefix_prevparalevel, whichDSF, AveragingState, Chem_Pot, iKmin, iKmax); if (!in_parallel ) if (whichDSF != 'q') Evaluate_F_Sumrule (prefix_prevparalevel, whichDSF, AveragingState, Chem_Pot, iKmin, iKmax); // Produce sorted file //if (!in_parallel && whichDSF != 'Z') Sort_RAW_File (RAW_Cstr, 'f', whichDSF); //if (!in_parallel && whichDSF == 'Z') Sort_RAW_File (RAW_Cstr, 'e', whichDSF); return(scan_info); } //****************************************************** // Functions to initiate scans: // General version for equilibrium correlators at generic (possibly finite) temperature: void Scan_LiebLin (char whichDSF, DP c_int, DP L, int N, int iKmin, int iKmax, DP kBT, int Max_Secs, DP target_sumrule, bool refine, int paralevel, Vect rank, Vect nr_processors) { // This function scans the Hilbert space of the LiebLin gas, // for the function identified by whichDSF. // whichDSF == 'Z': canonical partition function // whichDSF == 'd': density-density correlation function // whichDSF == 'g': Green's function < \Psi \Psi^{\dagger}> // whichDSF == 'o': one-body function < \Psi^{\dagger} \Psi > // Delta is the number of sites involved in the smoothing of the entropy //int Delta = int(sqrt(N))/2;//6;//N/20; //DP epsilon = log(L)/L; // using Gaussian for density in entropy. //DP epsilon = 1.0/L; // using Lorentzian for density in entropy. // Construct the finite-size saddle-point state: // if we refine, read the quantum numbers of the saddle point state (and seed sps) from the sps file: stringstream SPS_stringstream; string SPS_string; //SPS_stringstream << "Tgt0_"; //Data_File_Name (SPS_stringstream, whichDSF, iKmin, iKmax, kBT, spstate, SeedScanState, ""); Data_File_Name (SPS_stringstream, whichDSF, c_int, L, N, iKmin, iKmax, kBT, 0.0, ""); SPS_stringstream << ".sps"; SPS_string = SPS_stringstream.str(); const char* SPS_Cstr = SPS_string.c_str(); fstream spsfile; if (refine) spsfile.open(SPS_Cstr, fstream::in); else spsfile.open(SPS_Cstr, fstream::out | fstream::trunc); if (spsfile.fail()) { cout << SPS_Cstr << endl; JSCerror("Could not open spsfile."); } LiebLin_Bethe_State spstate; if (!refine) { // obtain the sps from discretized TBA spstate = Canonical_Saddle_Point_State (c_int, L, N, whichDSF == 'Z' ? 0.0 : kBT); } else { // read it from the sps file // Check that the sps has the right number of Ix2: int Nspsread; spsfile >> Nspsread; if (Nspsread != N) { cout << Nspsread << "\t" << N << endl; JSCerror("Wrong number of Ix2 in saddle-point state."); } spstate = LiebLin_Bethe_State (c_int, L, N); for (int i = 0; i < N; ++i) spsfile >> spstate.Ix2[i]; } spstate.Compute_All(true); int Nscan = N; if (whichDSF == 'o') Nscan = N - 1; if (whichDSF == 'g') Nscan = N + 1; // Now construct or read off the seed scan state: // TO MODIFY: this is not a good idea, since this might construct a state with many p-h w/r to the AveragingState. LiebLin_Bethe_State SeedScanState; if (whichDSF != 'o' && whichDSF != 'g') SeedScanState = spstate; else if (whichDSF == 'o' || whichDSF == 'g') { if (!refine) { //SeedScanState = Canonical_Saddle_Point_State (c_int, L, Nscan, kBT); //LiebLin_Bethe_State scanspstate = Canonical_Saddle_Point_State (c_int, L, Nscan, kBT); //SeedScanState = scanspstate; if (whichDSF == 'o') SeedScanState = Remove_Particle_at_Center (spstate); else SeedScanState = Add_Particle_at_Center (spstate); } else { // read it from the sps file // Check that the sps has the right number of Ix2: int Nsspsread; spsfile >> Nsspsread; if (Nsspsread != Nscan) { cout << Nsspsread << "\t" << Nscan << endl; JSCerror("Wrong number of Ix2 in scan saddle-point state."); } SeedScanState = LiebLin_Bethe_State (c_int, L, Nscan); for (int i = 0; i < Nscan; ++i) spsfile >> SeedScanState.Ix2[i]; } } // if one-body or Green's function SeedScanState.Compute_All(true); LiebLin_Bethe_State ScanState = SeedScanState; DP delta = sqrt(DP(N)) * (spstate.lambdaoc[N-1] - spstate.lambdaoc[0])/N; if (!refine) { // we write data to the sps file spsfile << N << endl; spsfile << spstate.Ix2 << endl; spsfile << Nscan << endl; spsfile << SeedScanState.Ix2 << endl; spsfile << endl << spstate << endl << endl; for (int i = 1; i < spstate.N - 2; ++i) spsfile << 0.5 * (spstate.lambdaoc[i] + spstate.lambdaoc[i+1]) //<< "\t" << twoPI/(spstate.L * (spstate.lambdaoc[i+1] - spstate.lambdaoc[i])) << endl; << "\t" << 1.0/spstate.L * (0.25/(spstate.lambdaoc[i] - spstate.lambdaoc[i-1]) + 0.5/(spstate.lambdaoc[i+1] - spstate.lambdaoc[i]) + 0.25/(spstate.lambdaoc[i+2] - spstate.lambdaoc[i+1])) << "\t" << rho_of_lambdaoc_1 (spstate, 0.5 * (spstate.lambdaoc[i] + spstate.lambdaoc[i+1]), delta) << "\t" << rho_of_lambdaoc_2 (spstate, 0.5 * (spstate.lambdaoc[i] + spstate.lambdaoc[i+1]), delta) << endl; } spsfile.close(); // Perform the scan: General_Scan (whichDSF, iKmin, iKmax, 100000000, kBT, spstate, SeedScanState, "", Max_Secs, target_sumrule, refine, paralevel, rank, nr_processors); return; } void Scan_LiebLin (char whichDSF, DP c_int, DP L, int N, int iKmin, int iKmax, DP kBT, int Max_Secs, DP target_sumrule, bool refine) { int paralevel = 0; Vect rank(0,1); Vect nr_processors(0,1); Scan_LiebLin (whichDSF, c_int, L, N, iKmin, iKmax, kBT, Max_Secs, target_sumrule, refine, paralevel, rank, nr_processors); return; } // Scanning on an excited state defined by a set of Ix2: void Scan_LiebLin (char whichDSF, LiebLin_Bethe_State AveragingState, string defaultScanStatename, int iKmin, int iKmax, int Max_Secs, DP target_sumrule, bool refine, int paralevel, Vect rank, Vect nr_processors) { // This function is as Scan_LiebLin for generic T defined above, except that the // averaging is now done on a state defined by AveragingStateIx2 // PRECONDITIONS: // - the Ix2 of AveragingState are properly set. DP c_int = AveragingState.c_int; DP L = AveragingState.L; int N = AveragingState.N; //LiebLin_Bethe_State GroundState (c_int, L, N); // Make sure the label of AveragingState is properly set to that relative to GS: //AveragingState.Set_Label_from_Ix2 (GroundState.Ix2); // The label of the Averaging State is by definition the `empty' label AveragingState.Set_Label_from_Ix2 (AveragingState.Ix2); AveragingState.Compute_All(true); int Nscan = N; if (whichDSF == 'o') Nscan = N - 1; if (whichDSF == 'g') Nscan = N + 1; LiebLin_Bethe_State SeedScanState (c_int, L, Nscan); if (whichDSF == 'd' || whichDSF == 'B') SeedScanState.Ix2 = AveragingState.Ix2; // If 'o', remove rightmost and shift quantum numbers by half-integer towards center. // if (whichDSF == 'o') for (int i = 0; i < N-1; ++i) SeedScanState.Ix2[i] = AveragingState.Ix2[i] + 1; // If 'g', add a new particle at the right, after shifting all towards center. //if (whichDSF == 'g') { //for (int i = 0; i < N; ++i) SeedScanState.Ix2[i] = AveragingState.Ix2[i] - 1; //SeedScanState.Ix2[N] = SeedScanState.Ix2[N-1] + 2; //} // If 'o', remove midmost and shift quantum numbers by half-integer towards removed one: if (whichDSF == 'o') { for (int i = 0; i < N-1; ++i) SeedScanState.Ix2[i] = AveragingState.Ix2[i + (i >= N/2)] + 1 - 2*(i >= N/2); } // If 'g', add a quantum number in middle (explicitly: to right of index N/2) // and shift quantum numbers by half-integer away from added one: if (whichDSF == 'g') { SeedScanState.Ix2[N/2] = AveragingState.Ix2[N/2] - 1; for (int i = 0; i < N+1; ++i) SeedScanState.Ix2[i + (i >= N/2)] = AveragingState.Ix2[i] - 1 + 2*(i >= N/2); } SeedScanState.Compute_All(true); SeedScanState.Set_Label_from_Ix2 (SeedScanState.Ix2); //cout << "which DSF = " << whichDSF << endl; //cout << "AveragingState Ix2: " << endl << AveragingState.Ix2 << endl; //cout << "SeedScanState Ix2: " << endl << SeedScanState.Ix2 << endl; DP kBT = 0.0; // Perform the scan: General_Scan (whichDSF, iKmin, iKmax, 100000000, kBT, AveragingState, SeedScanState, defaultScanStatename, Max_Secs, target_sumrule, refine, paralevel, rank, nr_processors); return; } // Simplified function call of the above: void Scan_LiebLin (char whichDSF, LiebLin_Bethe_State AveragingState, string defaultScanStatename, int iKmin, int iKmax, int Max_Secs, DP target_sumrule, bool refine) { int paralevel = 0; Vect rank(0,1); Vect nr_processors(0,1); Scan_LiebLin (whichDSF, AveragingState, defaultScanStatename, iKmin, iKmax, Max_Secs, target_sumrule, refine, paralevel, rank, nr_processors); return; } // Scanning on a previously-defined AveragingState void Scan_Heis (char whichDSF, XXZ_Bethe_State& AveragingState, string defaultScanStatename, int iKmin, int iKmax, int Max_Secs, DP target_sumrule, bool refine, int paralevel, Vect rank, Vect nr_processors) { // General state scanning for Heisenberg chains // PRECONDITIONS: // - the Ix2 of AveragingState are properly set. // Prepare the AveragingState: AveragingState.Compute_All(true); XXZ_Bethe_State SeedScanState; if (whichDSF == 'Z' || whichDSF == 'z') SeedScanState = AveragingState; else if (whichDSF == 'm') SeedScanState = Remove_Particle_at_Center (AveragingState); else if (whichDSF == 'p') SeedScanState = Add_Particle_at_Center (AveragingState); else JSCerror("Unknown whichDSF in Scan_Heis."); //cout << "In General_Scan: SeedScanState = " << SeedScanState << endl; // Now the scan itself General_Scan (whichDSF, iKmin, iKmax, AveragingState.chain.Nsites, 0.0, AveragingState, SeedScanState, defaultScanStatename, Max_Secs, target_sumrule, refine, paralevel, rank, nr_processors); } // Scanning on a previously-defined AveragingState void Scan_Heis (char whichDSF, XXX_Bethe_State& AveragingState, string defaultScanStatename, int iKmin, int iKmax, int Max_Secs, DP target_sumrule, bool refine, int paralevel, Vect rank, Vect nr_processors) { // General state scanning for Heisenberg chains // PRECONDITIONS: // - the Ix2 of AveragingState are properly set. // Prepare the AveragingState: AveragingState.Compute_All(true); XXX_Bethe_State SeedScanState; if (whichDSF == 'Z' || whichDSF == 'z') SeedScanState = AveragingState; else if (whichDSF == 'm') SeedScanState = Remove_Particle_at_Center (AveragingState); else if (whichDSF == 'p') SeedScanState = Add_Particle_at_Center (AveragingState); else JSCerror("Unknown whichDSF in Scan_Heis."); // Now the scan itself General_Scan (whichDSF, iKmin, iKmax, AveragingState.chain.Nsites, 0.0, AveragingState, SeedScanState, defaultScanStatename, Max_Secs, target_sumrule, refine, paralevel, rank, nr_processors); } // Scanning on a previously-defined AveragingState void Scan_Heis (char whichDSF, XXZ_gpd_Bethe_State& AveragingState, string defaultScanStatename, int iKmin, int iKmax, int Max_Secs, DP target_sumrule, bool refine, int paralevel, Vect rank, Vect nr_processors) { // General state scanning for Heisenberg chains // PRECONDITIONS: // - the Ix2 of AveragingState are properly set. // Prepare the AveragingState: AveragingState.Compute_All(true); XXZ_gpd_Bethe_State SeedScanState; if (whichDSF == 'Z' || whichDSF == 'z') SeedScanState = AveragingState; else if (whichDSF == 'm') SeedScanState = Remove_Particle_at_Center (AveragingState); else if (whichDSF == 'p') SeedScanState = Add_Particle_at_Center (AveragingState); else JSCerror("Unknown whichDSF in Scan_Heis."); // Now the scan itself General_Scan (whichDSF, iKmin, iKmax, AveragingState.chain.Nsites, 0.0, AveragingState, SeedScanState, defaultScanStatename, Max_Secs, target_sumrule, refine, paralevel, rank, nr_processors); } //void Scan_Heis (char whichDSF, DP Delta, DP N, int M, bool fixed_iK, int iKneeded, void Scan_Heis (char whichDSF, DP Delta, int N, int M, int iKmin, int iKmax, int Max_Secs, DP target_sumrule, bool refine, int paralevel, Vect rank, Vect nr_processors) { // This function scans the Hilbert space of the Heisenberg spin-1/2 chain // for the function identified by whichDSF. // whichDSF == 'Z': canonical partition function // whichDSF == 'm': S^{-+} // whichDSF == 'z': S^{zz} // whichDSF == 'p': S^{+-} // whichDSF == 'a': < S^z_j S^z_{j+1} S^z_l S^z_{l+1} > for RIXS // whichDSF == 'b': < S^z_j S^-_{j+1} S^-_l S^z_{l+1} > + (m <-> z) for RIXS // whichDSF == 'c': < S^-_j S^-_{j+1} S^-_l S^-_{l+1} > for RIXS Heis_Chain BD1(1.0, Delta, 0.0, N); Vect_INT Nrapidities_groundstate(0, BD1.Nstrings); Nrapidities_groundstate[0] = M; Heis_Base baseconfig_groundstate(BD1, Nrapidities_groundstate); if ((Delta > 0.0) && (Delta < 1.0)) { XXZ_Bethe_State GroundState(BD1, baseconfig_groundstate); GroundState.Compute_All(true); // The ground state is now fully defined. XXZ_Bethe_State SeedScanState; if (whichDSF == 'Z' || whichDSF == 'z') SeedScanState = GroundState; else if (whichDSF == 'm') SeedScanState = XXZ_Bethe_State(GroundState.chain, M - 1); else if (whichDSF == 'p') SeedScanState = XXZ_Bethe_State(GroundState.chain, M + 1); else JSCerror("Unknown whichDSF in Scan_Heis."); // Now the scan itself General_Scan (whichDSF, iKmin, iKmax, N, 0.0, GroundState, SeedScanState, "", Max_Secs, target_sumrule, refine, paralevel, rank, nr_processors); } else if (Delta == 1.0) { XXX_Bethe_State GroundState(BD1, baseconfig_groundstate); GroundState.Compute_All(true); // The ground state is now fully defined. XXX_Bethe_State SeedScanState; if (whichDSF == 'Z' || whichDSF == 'z' || whichDSF == 'a' || whichDSF == 'q') SeedScanState = GroundState; else if (whichDSF == 'm') SeedScanState = XXX_Bethe_State(GroundState.chain, M - 1); else if (whichDSF == 'p') SeedScanState = XXX_Bethe_State(GroundState.chain, M + 1); else if (whichDSF == 'c') SeedScanState = XXX_Bethe_State(GroundState.chain, M - 2); else JSCerror("Unknown whichDSF in Scan_Heis."); // Now the scan itself General_Scan (whichDSF, iKmin, iKmax, N, 0.0, GroundState, SeedScanState, "", Max_Secs, target_sumrule, refine, paralevel, rank, nr_processors); } else if (Delta > 1.0) { XXZ_gpd_Bethe_State GroundState(BD1, baseconfig_groundstate); GroundState.Compute_All(true); // The ground state is now fully defined. XXZ_gpd_Bethe_State SeedScanState; if (whichDSF == 'Z' || whichDSF == 'z') SeedScanState = GroundState; else if (whichDSF == 'm') SeedScanState = XXZ_gpd_Bethe_State(GroundState.chain, M - 1); else if (whichDSF == 'p') SeedScanState = XXZ_gpd_Bethe_State(GroundState.chain, M + 1); else JSCerror("Unknown whichDSF in Scan_Heis."); // Now the scan itself General_Scan (whichDSF, iKmin, iKmax, N, 0.0, GroundState, SeedScanState, "", Max_Secs, target_sumrule, refine, paralevel, rank, nr_processors); } else JSCerror("Delta out of range in Heis_Structure_Factor"); return; } void Scan_Heis (char whichDSF, DP Delta, int N, int M, int iKmin, int iKmax, int Max_Secs, DP target_sumrule, bool refine) { int paralevel = 0; Vect rank(0,1); Vect nr_processors(0,1); Scan_Heis (whichDSF, Delta, N, M, iKmin, iKmax, Max_Secs, target_sumrule, refine, paralevel, rank, nr_processors); return; } /* // Simplified calls: void Scan_Heis (char whichDSF, DP Delta, int N, int M, int iKmin, int iKmax, int Max_Secs, bool refine) { //Scan_Heis (whichDSF, Delta, N, M, false, 0, Max_Secs, refine, 0, 1); Scan_Heis (whichDSF, Delta, N, M, iKmin, iKmax, Max_Secs, 1.0e+6, refine, 0, 1); } void Scan_Heis (char whichDSF, DP Delta, int N, int M, int iKneeded, int Max_Secs, bool refine) { //Scan_Heis (whichDSF, Delta, N, M, true, iKneeded, Max_Secs, refine, 0, 1); Scan_Heis (whichDSF, Delta, N, M, iKneeded, iKneeded, Max_Secs, 1.0e+6, refine, 0, 1); } void Scan_Heis (char whichDSF, DP Delta, int N, int M, int Max_Secs, bool refine) { //Scan_Heis (whichDSF, Delta, N, M, false, 0, Max_Secs, refine, 0, 1); Scan_Heis (whichDSF, Delta, N, M, 0, N, Max_Secs, 1.0e+6, refine, 0, 1); } */ /* void Scan_ODSLF (char whichDSF, DP Delta, int N, int M, int iKmin, int iKmax, int Max_Secs, DP target_sumrule, bool refine, int rank, int nr_processors) { // This function scans the Hilbert space of the spinless fermions related to Heisenberg spin-1/2 chain // for the function identified by whichDSF. // whichDSF == 'Z': canonical partition function // whichDSF == 'm': S^{-+} // whichDSF == 'z': S^{zz} // whichDSF == 'p': S^{+-} // whichDSF == 'a': < S^z_j S^_{j+1} S^z_l S^z_{l+1} > for RIXS Heis_Chain BD1(1.0, Delta, 0.0, N); Vect_INT Nrapidities_groundstate(0, BD1.Nstrings); Nrapidities_groundstate[0] = M; ODSLF_Base baseconfig_groundstate(BD1, Nrapidities_groundstate); ODSLF_Ix2_Offsets baseoffsets(baseconfig_groundstate, 0ULL); if ((Delta > 0.0) && (Delta < 1.0)) { ODSLF_XXZ_Bethe_State GroundState(BD1, baseconfig_groundstate); GroundState.Compute_All(true); // The ground state is now fully defined. Now the scan itself //General_Scan (whichDSF, fixed_iK, iKneeded, N, GroundState, GroundState, Max_Secs, refine, rank, nr_processors); General_Scan (whichDSF, iKmin, iKmax, N, 0.0, GroundState, GroundState, Max_Secs, target_sumrule, refine, rank, nr_processors); } */ /* else if (Delta == 1.0) { XXX_Bethe_State GroundState(BD1, baseconfig_groundstate); GroundState.Compute_All(true); // The ground state is now fully defined. Now the scan itself //General_Scan (whichDSF, fixed_iK, iKneeded, N, GroundState, GroundState, Max_Secs, refine, rank, nr_processors); General_Scan (whichDSF, iKmin, iKmax, N, GroundState, GroundState, Max_Secs, refine, rank, nr_processors); } else if (Delta > 1.0) { XXZ_gpd_Bethe_State GroundState(BD1, baseconfig_groundstate); GroundState.Compute_All(true); // The ground state is now fully defined. Now the scan itself //General_Scan (whichDSF, fixed_iK, iKneeded, N, GroundState, GroundState, Max_Secs, refine, rank, nr_processors); General_Scan (whichDSF, iKmin, iKmax, N, GroundState, GroundState, Max_Secs, refine, rank, nr_processors); } */ /* else JSCerror("Delta out of range in ODSLF Structure Factor"); return; } // Simplified calls: void Scan_ODSLF (char whichDSF, DP Delta, int N, int M, int iKmin, int iKmax, int Max_Secs, bool refine) { //Scan_Heis (whichDSF, Delta, N, M, false, 0, Max_Secs, refine, 0, 1); Scan_ODSLF (whichDSF, Delta, N, M, iKmin, iKmax, Max_Secs, 1.0e+6, refine, 0, 1); } void Scan_ODSLF (char whichDSF, DP Delta, int N, int M, int iKneeded, int Max_Secs, bool refine) { //Scan_Heis (whichDSF, Delta, N, M, true, iKneeded, Max_Secs, refine, 0, 1); Scan_ODSLF (whichDSF, Delta, N, M, iKneeded, iKneeded, Max_Secs, 1.0e+6, refine, 0, 1); } void Scan_ODSLF (char whichDSF, DP Delta, int N, int M, int Max_Secs, bool refine) { //Scan_Heis (whichDSF, Delta, N, M, false, 0, Max_Secs, refine, 0, 1); Scan_ODSLF (whichDSF, Delta, N, M, 0, N, Max_Secs, 1.0e+6, refine, 0, 1); } // Geometric quenches void Scan_LiebLin_Geometric_Quench (DP c_int, DP L_1, int type_id_1, long long int id_1, DP L_2, int N, int iK_UL, int Max_Secs, DP target_sumrule, bool refine) { // We decompose the wavefunction of state 1 (living on length L_1) into // the wavefunctions living on length L_2. // IMPORTANT ASSUMPTIONS: LiebLin_Bethe_State lstate(c_int, L_1, N, iK_UL, type_id_1); lstate.Set_to_id(id_1); lstate.Compute_All(true); // We now put the rapidities and norm into a state in length L_2, // which will serve as basis for the scan. LiebLin_Bethe_State lstate2(c_int, L_2, N, iK_UL, type_id_1); lstate2.Set_to_id (0LL); lstate2.Compute_All(true); char whichDSF = 'q'; //General_Scan (whichDSF, false, 0, 100000000, lstate, lstate2, Max_Secs, refine, 0, 1); General_Scan (whichDSF, -iK_UL, iK_UL, 100000000, 0.0, lstate, lstate2, Max_Secs, target_sumrule, refine, 0, 1); return; } void Scan_Heis_Geometric_Quench (DP Delta, int N_1, int M, long long int base_id_1, long long int type_id_1, long long int id_1, int N_2, int iKmin, int iKmax, int Max_Secs, DP target_sumrule, bool refine) { // We decompose the wavefunction of state 1 (living on length L_1) into // the wavefunctions living on length L_2. Heis_Chain BD_1(1.0, Delta, 0.0, N_1); Heis_Chain BD_2(1.0, Delta, 0.0, N_2); if ((Delta > 0.0) && (Delta < 1.0)) { JSCerror("Geometric quench not yet implemented for XXZ."); } else if (Delta == 1.0) { XXX_Bethe_State BasicState_1(BD_1, base_id_1, type_id_1); BasicState_1.Set_to_id (id_1); BasicState_1.Compute_All(true); // Ref state for scanning: XXX_Bethe_State BasicState_2(BD_2, M); BasicState_2.Set_to_id (0LL); BasicState_2.Compute_All(true); char whichDSF = 'q'; // The ground state is now fully defined. Now the scan itself //General_Scan (whichDSF, fixed_iK, iKneeded, N, GroundState, GroundState, Max_Secs, refine, rank, nr_processors); General_Scan (whichDSF, iKmin, iKmax, N_2, 0.0, BasicState_1, BasicState_2, Max_Secs, target_sumrule, refine, 0, 1); } else if (Delta > 1.0) { JSCerror("Geometric quench not yet implemented for XXZ_gpd."); } else JSCerror("Delta out of range in Heis_Structure_Factor"); return; } */ } // namespace JSC