/********************************************************** This software is part of J.-S. Caux's ABACUS library. Copyright (c) J.-S. Caux. ----------------------------------------------------------- File: LiebLin_DSF_over_Ensemble.cc Purpose: main function for ABACUS for LiebLin gas, averaging over an Ensemble. ***********************************************************/ #include "ABACUS.h" using namespace std; using namespace ABACUS; int main(int argc, char* argv[]) { if (argc != 10) { // provide some info cout << endl << "Welcome to ABACUS\t(copyright J.-S. Caux)." << endl; cout << endl << "Usage of LiebLin_DSF_Tgt0 executable: " << endl; cout << endl << "Provide the following arguments:" << endl << endl; cout << "char whichDSF \t\t Which structure factor should be calculated ? Options are: d for rho rho, g for psi psi{dagger}, o for psi{dagger} psi" << endl; cout << "DP c_int \t\t Value of the interaction parameter: use positive real values only" << endl; cout << "DP L \t\t\t Length of the system: use positive real values only" << endl; cout << "int N \t\t\t Number of particles: use positive integer values only" << endl; cout << "int iKmin" << endl << "int iKmax \t\t Min and max momentum integers to scan over: recommended values: -2*N and 2*N" << endl; cout << "DP kBT \t\t Temperature (positive only of course)" << endl; //cout << "int nstates \t\t\t Number of states to be considered in the ensemble" << endl; cout << "int Max_Secs \t\t Allowed computational time: (in seconds)" << endl; //cout << "DP target_sumrule \t sumrule saturation you're satisfied with" << endl; cout << "bool refine \t\t Is this a refinement of earlier calculations ? (0 == false, 1 == true)" << endl; cout << endl << "EXAMPLE: " << endl << endl; cout << "LiebLin_DSF_over_Ensemble d 1.0 100.0 100 0 200 0.56 10 600 0" << endl << endl; } else { // (argc == 10), correct nr of arguments char whichDSF = *argv[1]; DP c_int = atof(argv[2]); DP L = atof(argv[3]); int N = atoi(argv[4]); int iKmin = atoi(argv[5]); int iKmax = atoi(argv[6]); DP kBT = atof(argv[7]); //int nstates_req = atoi(argv[8]); int Max_Secs = atoi(argv[8]); bool refine = (atoi(argv[9]) == 1); // Start by constructing (or loading) the state ensemble. LiebLin_Diagonal_State_Ensemble ensemble; stringstream ensfilestrstream; //ensfilestrstream << "LiebLin_c_int_" << c_int << "_L_" << L << "_N_" << N << "_kBT_" << kBT << "_ns_" << nstates_req << ".ens"; ensfilestrstream << "LiebLin_c_int_" << c_int << "_L_" << L << "_N_" << N << "_kBT_" << kBT << ".ens"; string ensfilestr = ensfilestrstream.str(); const char* ensfile_Cstr = ensfilestr.c_str(); if (!refine) { // Construct the state ensemble //ensemble = LiebLin_Thermal_Saddle_Point_Ensemble (c_int, L, N, kBT, nstates_req); ensemble = LiebLin_Thermal_Saddle_Point_Ensemble (c_int, L, N, kBT); ensemble.Save(ensfile_Cstr); // Save the ensemble } else { // load the ensemble data ensemble.Load(c_int, L, N, ensfile_Cstr); } // Now perform the DSF calculation over each state in the ensemble, distributing the time according to the weight for (int ns = 0; ns < ensemble.nstates; ++ns) { //void Scan_LiebLin (char whichDSF, LiebLin_Bethe_State AveragingState, string defaultScanStatename, int iKmin, int iKmax, //int Max_Secs, DP target_sumrule, bool refine, int rank, int nr_processors) //Scan_LiebLin (whichDSF, ensemble.state[ns], ensemble.state[ns].label, iKmin, iKmax, int(Max_Secs * ensemble.weight[ns]), 1.0e+6, refine, 0, 1); Scan_LiebLin (whichDSF, ensemble.state[ns], ensemble.state[ns].label, iKmin, iKmax, int(Max_Secs * ensemble.weight[ns]), 1.0e+6, refine); } // Evaluate the f-sumrule stringstream FSR_stringstream; string FSR_string; Data_File_Name (FSR_stringstream, whichDSF, c_int, L, N, iKmin, iKmax, kBT, 0.0, ""); FSR_stringstream << "_ns_" << ensemble.nstates << ".fsr"; FSR_string = FSR_stringstream.str(); const char* FSR_Cstr = FSR_string.c_str(); DP Chem_Pot = 0.0; Evaluate_F_Sumrule (whichDSF, c_int, L, N, kBT, ensemble.nstates, Chem_Pot, iKmin, iKmax, FSR_Cstr); } // correct nr of arguments return(0); }