176 lines
4.7 KiB
C++
176 lines
4.7 KiB
C++
/**********************************************************
|
|
|
|
This software is part of J.-S. Caux's ABACUS library.
|
|
|
|
Copyright (c) J.-S. Caux.
|
|
|
|
-----------------------------------------------------------
|
|
|
|
File: ABACUS_Spec_Fns.h
|
|
|
|
Purpose: Defines special math functions.
|
|
|
|
***********************************************************/
|
|
|
|
#ifndef ABACUS_SPEC_FNS_H
|
|
#define ABACUS_SPEC_FNS_H
|
|
|
|
#include "ABACUS.h"
|
|
|
|
namespace ABACUS {
|
|
|
|
inline DP Cosine_Integral (DP x)
|
|
{
|
|
|
|
// Returns the Cosine integral -\int_x^\infty dt \frac{\cos t}{t}
|
|
// Refer to GR[6] 8.23
|
|
|
|
if (x <= 0.0) {
|
|
std::cout << "Cosine_Integral called with real argument " << x << " <= 0, which is ill-defined because of the branch cut." << std::endl;
|
|
ABACUSerror("");
|
|
}
|
|
|
|
else if (x < 15.0) { // Use power series expansion
|
|
|
|
// Ci (x) = gamma + \ln x + \sum_{n=1}^\infty (-1)^n x^{2n}/(2n (2n)!).
|
|
|
|
int n = 1;
|
|
DP minonetothen = -1.0;
|
|
DP logxtothetwon = 2.0 * log(x);
|
|
DP twologx = 2.0 * log(x);
|
|
DP logtwonfact = log(2.0);
|
|
|
|
DP series = minonetothen * exp(logxtothetwon - log(2.0 * n) - logtwonfact);
|
|
DP term_n;
|
|
|
|
do {
|
|
n += 1;
|
|
minonetothen *= -1.0;
|
|
logxtothetwon += twologx;
|
|
logtwonfact += log((2.0 * n - 1.0) * 2.0 * n);
|
|
term_n = minonetothen * exp(logxtothetwon - log(2.0 * n) - logtwonfact);
|
|
series += term_n;
|
|
|
|
} while (fabs(term_n) > 1.0e-16);
|
|
|
|
return(Euler_Mascheroni + log(x) + series);
|
|
}
|
|
|
|
|
|
else { // Use high x power series
|
|
|
|
// Ci (x) = \frac{\sin x}{x} \sum_{n=0}^\infty (-1)^n (2n)! x^{-2n} - \frac{\cos x}{x} \sum_{n=0}^\infty (-1)^n (2n+1)! x^{-2n-1}
|
|
|
|
int n = 0;
|
|
DP minonetothen = 1.0;
|
|
DP logxtothetwon = 0.0;
|
|
DP logxtothetwonplus1 = log(x);
|
|
DP twologx = 2.0 * log(x);
|
|
DP logtwonfact = 0.0;
|
|
DP logtwonplus1fact = 0.0;
|
|
|
|
DP series1 = minonetothen * exp(logtwonfact - logxtothetwon);
|
|
DP series2 = minonetothen * exp(logtwonplus1fact - logxtothetwonplus1);
|
|
|
|
do {
|
|
n += 1;
|
|
minonetothen *= -1.0;
|
|
logxtothetwon += twologx;
|
|
logxtothetwonplus1 += twologx;
|
|
logtwonfact += log((2.0 * n - 1.0) * 2.0 * n);
|
|
logtwonplus1fact += log(2.0 * n * (2.0 * n + 1));
|
|
|
|
series1 += minonetothen * exp(logtwonfact - logxtothetwon);
|
|
series2 += minonetothen * exp(logtwonplus1fact - logxtothetwonplus1);
|
|
|
|
} while (n < 12);
|
|
|
|
return((sin(x)/x) * series1 - (cos(x)/x) * series2);
|
|
|
|
}
|
|
|
|
|
|
return(log(-1.0));
|
|
}
|
|
|
|
|
|
/*********** Jacobi Theta functions *********/
|
|
|
|
inline DP Jacobi_Theta_1_q (DP u, DP q) {
|
|
|
|
// Uses the summation formula.
|
|
// theta_1 (x) = 2 \sum_{n=1}^\infty (-1)^{n+1} q^{(n-1/2)^2} \sin (2n-1)u
|
|
// in which q is the nome. (GR 8.180.1)
|
|
// We always evaluate to numerical accuracy.
|
|
|
|
if (q >= 1.0) ABACUSerror("Jacobi_Theta_1_q function called with q > 1.");
|
|
|
|
|
|
DP answer = 0.0;
|
|
DP contrib = 0.0;
|
|
DP qtonminhalfsq = pow(q, 0.25); // this will be q^{(n-1/2)^2}
|
|
DP qtotwon = pow(q, 2.0); // this will be q^{2n}
|
|
DP qsq = q*q;
|
|
int n = 1;
|
|
|
|
do {
|
|
contrib = (n % 2 ? 2.0 : -2.0) * qtonminhalfsq * sin((2.0*n - 1.0)*u);
|
|
answer += contrib;
|
|
qtonminhalfsq *= qtotwon;
|
|
qtotwon *= qsq;
|
|
n++;
|
|
} while (fabs(contrib/answer) > MACHINE_EPS);
|
|
|
|
return(answer);
|
|
}
|
|
|
|
inline std::complex<DP> ln_Jacobi_Theta_1_q (std::complex<DP> u, std::complex<DP> q) {
|
|
|
|
// This uses the product representation
|
|
// \theta_1 (x) = 2 q^{1/4} \sin{u} \prod_{n=1}^\infty (1 - 2 q^{2n} \cos 2u + q^{4n}) (1 - q^{2n})
|
|
// (GR 8.181.2)
|
|
|
|
std::complex<DP> contrib = 0.0;
|
|
std::complex<DP> qtotwon = q*q; // this will be q^{2n}
|
|
std::complex<DP> qsq = q*q;
|
|
std::complex<DP> twocos2u = 2.0 * cos(2.0*u);
|
|
int n = 1;
|
|
std::complex<DP> answer = log(2.0 * sin(u)) + 0.25 * log(q);
|
|
|
|
do {
|
|
contrib = log((1.0 - twocos2u * qtotwon + qtotwon * qtotwon) * (1.0 - qtotwon));
|
|
answer += contrib;
|
|
qtotwon *= qsq;
|
|
n++;
|
|
} while (abs(contrib) > 1.0e-12);
|
|
|
|
return(answer);
|
|
}
|
|
|
|
|
|
/************ Barnes function ************/
|
|
|
|
inline DP ln_Gamma_for_Barnes_G_RE (Vect_DP args)
|
|
{
|
|
return(real(ln_Gamma(std::complex<double>(args[0]))));
|
|
}
|
|
|
|
inline DP ln_Barnes_G_RE (DP z)
|
|
{
|
|
// Implementation according to equation (28) of 2004_Adamchik_CPC_157
|
|
// Restricted to real arguments.
|
|
|
|
Vect_DP args (0.0, 2);
|
|
|
|
DP req_rel_prec = 1.0e-6;
|
|
DP req_abs_prec = 1.0e-6;
|
|
int max_nr_pts = 10000;
|
|
Integral_result integ_ln_Gamma = Integrate_optimal (ln_Gamma_for_Barnes_G_RE, args, 0, 0.0, z - 1.0, req_rel_prec, req_abs_prec, max_nr_pts);
|
|
|
|
return(0.5 * (z - 1.0) * (2.0 - z + logtwoPI) + (z - 1.0) * real(ln_Gamma(std::complex<double>(z - 1.0))) - integ_ln_Gamma.integ_est);
|
|
}
|
|
|
|
} // namespace ABACUS
|
|
|
|
#endif
|