diff --git a/build/a.html b/build/a.html new file mode 100644 index 0000000..846583d --- /dev/null +++ b/build/a.html @@ -0,0 +1,1894 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Appendices + + +a

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/a_l.html b/build/a_l.html new file mode 100644 index 0000000..1bb2072 --- /dev/null +++ b/build/a_l.html @@ -0,0 +1,1977 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Literature + + +a.l

+
+
    +
  • +M
    +J. C. Maxwell,
    +A Treatise on Electricity & Magnetism, Vol. 1 and Vol. 2
    +Clarendon Press, 1891 [Unabridged replication by Dover, 1954] +
      +
    • a monumental masterpiece; arguably the most important book in human history
    • +
    +
  • + +
  • +FLS
    +R. P. Feynman, R. B. Leighton and M. Sands,
    +The Feynman Lectures on Physics (Vol. 2): Mainly Magnetism and Matter
    +Addison-Wesley, 1964 [various reprints available] +
      +
    • profound, inspiring; no exercises; the feel good book about electrodynamics
    • +
    +
  • + +
  • +Gr
    +D. J. Griffiths,
    +Introduction to Electrodynamics
    +(4th edition) Various publishers [Prentice Hall; Pearson; Cambridge University Press] +
      +
    • a "friendly and accessible" book; admittedly popular, but very patchy quality
    • +
    +
  • + +
  • +J
    +J. D. Jackson,
    +Classical Electrodynamics
    +Wiley, 1999 (3rd edition)
    +
      +
    • +superbly written; advanced level; renowned exercises; real, actual science, told like it is
    • +
    • compulsory bedtime reading for would-be theorists
    • +
    +
  • + +
  • +LL
    + L. D. Landau and E. M. Lifshitz,
    +The Classical Theory of Fields (Course of Theoretical Physics Vol. 2)
    +Elsevier, 1975 [4th edition] +
      +
    • a classic; electromagnetic phenomena from relativistic ones
    • +
    +
  • + +
  • +PM
    +E. M. Purcell and D. J. Morin,
    +Electricity and Magnetismhighly recommended
    +Cambridge University Press (3rd edition) 2013
    +Available from the Internet Archive at this link.
    + +
      +
    • Purcell: the Nobel prize-winning discoverer of nuclear magnetic resonance;
    • +
    • part of the Berkeley Physics Course; extremely well written and illustrated;
    • +
    • extremely clear and accessible yet full of profound and inspiring insights
    • +
    +
  • + +
  • +PS
    +G. L. Pollack and D. R. Stump,
    +Electromagnetism
    +Addison Wesley/Pearson Education 2002 +
      +
    • clear and accessible
    • +
    +
  • + +
  • +W
    +R. K. Wangsness,
    +Electromagnetic Fields
    +Wiley, 1986 [2nd edition] +
      +
    • very clear and accessible; intermediate level
      +
    • +
    +
  • +
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c.html b/build/c.html new file mode 100644 index 0000000..96bfa18 --- /dev/null +++ b/build/c.html @@ -0,0 +1,1894 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Compendium + + +c

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m.html b/build/c_m.html new file mode 100644 index 0000000..b739fa8 --- /dev/null +++ b/build/c_m.html @@ -0,0 +1,1900 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Mathematics + + +c.m

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_cs.html b/build/c_m_cs.html new file mode 100644 index 0000000..5f91f04 --- /dev/null +++ b/build/c_m_cs.html @@ -0,0 +1,1896 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Coordinate Systems + + +c.m.cs

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_cs_cyl.html b/build/c_m_cs_cyl.html new file mode 100644 index 0000000..264a6ed --- /dev/null +++ b/build/c_m_cs_cyl.html @@ -0,0 +1,2060 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Cylindrical Coordinates + + +c.m.cs.cyl
+
+

+\((r, \phi, z)\). Relation to Cartesian coordinates: +

+ +

+\[ +x = r \cos \phi, y = r \sin \phi, z = z +\label{Gr(1.74)} +\] +

+ +

+The unit vectors are +

+ +

+\[ +\hat{\bf r} = \cos \phi ~\hat{\bf x} + \sin \phi~\hat{\bf y}, +\hat{\boldsymbol \phi} = -\sin \theta ~\hat{\bf x} + \cos \phi~\hat{\bf y}, +\hat{\bf z} = \hat{\bf z}. +\label{Gr(1.75)} +\] +

+ +

+Infinitesimal displacement: +

+ +

+\[ +d{\bf l} = dr ~\hat{\bf r} + r d\phi~\hat{\boldsymbol \phi} + dz ~\hat{\bf z}. +\label{Gr(1.77)} +\] +

+ +

+Volume element: +

+ +

+\[ +d\tau = r dr d\phi dz +\label{Gr(1.78)} +\] +

+ +

+Range of parameters: \(r \in [0, \infty[\), \(\phi \in [0, 2\pi[\) and \(z \in ]-\infty, \infty[\). +

+
+ +
+
Gradient
+
+
+

+ + + + +

+
+
    +
  • Gr4(1.79)
  • +
+ +
+ +
+ +

+\[ +{\boldsymbol ∇} T = \frac{\partial T}{\partial r}~\hat{\bf r} +

+
    +
  • \frac{1}{r} \frac{\partial T}{\partial \phi}~\hat{\boldsymbol \phi}
  • +
  • \frac{\partial T}{\partial z} ~\hat{\bf z}
  • +
+

+\tag{cylgrad}\label{cylgrad} +\] +

+
+
+ +
+
Divergence
+
+
+

+ + + + +

+
+
    +
  • Gr4(2.21)
  • +
+ +
+ +
+ +

+\[ +{\boldsymbol ∇} ⋅ {\bf v} = \frac{1}{r} \frac{\partial}{\partial r} (r vr) +

+
    +
  • \frac{1}{r} \frac{∂ vφ}{∂ φ} + \frac{\partial v_z}{\partial z}.
  • +
+

+\tag{cyl_div} +\label{cyl_div} +\] +

+
+
+ +
+
Curl
+
+
+

+ + + + +

+
+
    +
  • Gr4(2.21)
  • +
+ +
+ +
+ +

+\[ +{\boldsymbol ∇} × {\bf v} = \left( \frac{1}{r} \frac{\partial v_z}{\partial \phi} - \frac{∂ vφ}{∂ z}\right) ~\hat{\bf r} +

+
    +
  • \left( \frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r} \right) ~\hat{\boldsymbol \phi}
  • +
  • \frac{1}{r} \left( \frac{\partial}{\partial r} (r vφ) - \frac{\partial v_r}{\partial \phi} \right) ~\hat{\bf z}
  • +
+

+\tag{cyl_curl} +\label{cyl_curl} +\] +

+
+
+ +
+
Laplacian
+
+

+\[ +{\boldsymbol ∇}2 T = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial T}{\partial r} \right) +

+
    +
  • \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2}
  • +
+

+\label{Gr(1.82)} +\] +

+
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_cs_hyp.html b/build/c_m_cs_hyp.html new file mode 100644 index 0000000..2ead9de --- /dev/null +++ b/build/c_m_cs_hyp.html @@ -0,0 +1,1889 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Hyperbolic Coordinates + + +c.m.cs.hyp
+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_cs_sph.html b/build/c_m_cs_sph.html new file mode 100644 index 0000000..551368b --- /dev/null +++ b/build/c_m_cs_sph.html @@ -0,0 +1,2033 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Spherical Coordinates + + +c.m.cs.sph
+
+ +
+sphere + +
Figure 1: Sphere drawn with Asymptote
+
+ +

+\((r, \theta, \phi)\). \(\theta\) is the polar angle, \(\phi\) the azimuthal angle. +

+ +

+\[ +x = r \sin \theta \cos \phi, +y = r \sin \theta \sin \phi, +z = r \cos \theta. +\label{Gr(1.62)} +\] +

+ +

+Unit vectors: \(\hat{\boldsymbol r}, \hat{\boldsymbol \theta}, \hat{\boldsymbol \phi}\). +

+ +

+\[ +{\bf A} = A_r \hat{\bf r} + A_{\theta} \hat{\bf \theta} + A_{\phi} \hat{\boldsymbol \phi} +\label{Gr(1.63)} +\] +

+ +

+In terms of Cartesian unit vectors: +

+ +\begin{align} +\hat{\boldsymbol r} &= \sin \theta \cos \phi \hat{\bf x} + \sin \theta \sin \phi \hat{\bf y} + \cos \theta \hat{\bf z}, \nonumber \\ +\hat{\boldsymbol \theta} &= \cos \theta \cos \phi \hat{\bf x} + \cos \theta \sin \phi \hat{\bf y} - \sin \theta \hat{\bf z}, \nonumber \\ +\hat{\boldsymbol \phi} &= -\sin \phi \hat{\bf x} + \cos \phi \hat{\bf y}. +\label{Gr(1.64)} +\end{align} + +

+Careful: these unit vectors are direction dependent, i.e. we should really +write \(\hat{\boldsymbol r} (\theta, \phi), \hat{\boldsymbol \theta} (\theta, \phi), \hat{\boldsymbol \phi} (\theta, \phi)\). +

+ +

+Infinitesimal displacement \(d{\bf l}\): +

+ +

+\[ +d{\bf l} = dr \hat{\boldsymbol r} + r d\theta \hat{\boldsymbol \theta} + r\sin \theta d\phi \hat{\boldsymbol \phi}. +\label{Gr(1.68)} +\] +

+ +

+Infinitesimal volume element: +

+ +

+\[ +d\tau = dl_r dl_{\theta} dl_{\phi} = r^2 \sin \theta dr d\theta d\phi +\label{Gr(1.69)} +\] +

+ +

+Infinitesimal surface element: depends on situation. +

+
+ +
+
Gradient
+
+

+\[ +{\boldsymbol ∇} T = \frac{\partial T}{\partial r} \hat{\boldsymbol r} + \frac{1}{r} \frac{\partial T}{\partial \theta} \hat{\boldsymbol \theta} +

+
    +
  • \frac{1}{r\sin \theta} \frac{\partial T}{\partial \phi} \hat{\boldsymbol \phi}.
  • +
+

+\label{Gr(1.70)} +\] +

+
+
+ +
+
Divergence
+
+

+\[ +{\boldsymbol ∇} ⋅ {\bf v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r2 vr) + \frac{1}{r\sin \theta} \frac{\partial}{\partial \theta} (sinθ vθ) +

+
    +
  • \frac{1}{r \sin \theta} \frac{∂ vφ}{∂ φ}
  • +
+

+\label{Gr(1.71)} +\] +

+
+
+ +
+
Curl
+
+

+\[ +{\boldsymbol ∇} × {\bf v} = \frac{1}{r\sin \theta} \left[ \frac{\partial}{\partial \theta} (sin θ vφ) - \frac{∂ vθ}{∂ φ} \right] \hat{\bf r} +

+
    +
  • \frac{1}{r} \left[ \frac{1}{\sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{\partial}{\partial r} (r vφ) \right] \hat{\boldsymbol \theta}
  • +
  • \frac{1}{r} \left[ \frac{\partial}{\partial r} (r vθ) - \frac{\partial v_r}{\partial \theta} \right] \hat{\boldsymbol \phi}
  • +
+

+\label{Gr(1.72)} +\] +

+
+
+ +
+
Laplacian
+
+

+\[ +{\boldsymbol ∇}2 T = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r2 \frac{\partial T}{\partial r}\right) +

+
    +
  • \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( sin θ \frac{\partial T}{\partial \theta}\right)
  • +
  • \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2}
  • +
+

+\label{Gr(1.73)} +\] +

+
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_dc.html b/build/c_m_dc.html new file mode 100644 index 0000000..0986a67 --- /dev/null +++ b/build/c_m_dc.html @@ -0,0 +1,1899 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Differential Calculus + + +c.m.dc

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_dc_curl.html b/build/c_m_dc_curl.html new file mode 100644 index 0000000..1f426f6 --- /dev/null +++ b/build/c_m_dc_curl.html @@ -0,0 +1,1901 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Curl + + +c.m.dc.curl
+
+\begin{align} +{\boldsymbol \nabla} \times {\bf v} &= \left| \begin{array}{ccc} \hat{\bf x} & \hat{\bf y} & \hat{\bf z} \\ +\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ +v_x & v_y & v_z \end{array} \right| \nonumber \\ +&= +\hat{\bf x} \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \right) + +\hat{\bf y} \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \right) + +\hat{\bf z} \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right) +\label{Gr(1.41)} +\end{align} +
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_dc_d2.html b/build/c_m_dc_d2.html new file mode 100644 index 0000000..21ad761 --- /dev/null +++ b/build/c_m_dc_d2.html @@ -0,0 +1,1939 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Second Derivatives + + +c.m.dc.d2
+
+
+ +
+
Divergence of gradient
+
+

+\({\boldsymbol \nabla} \cdot ({\boldsymbol \nabla} T) \equiv {\boldsymbol \nabla}^2 T\) is called the Laplacian of the scalar field \(T\). +The Laplacian of a vector field \({\boldsymbol \nabla}^2 {\bf v}\) is also defined as the vector with components +given by the Laplacian of the corresponding vector elements. +

+
+
+ +
+
Curl of a gradient
+
+

+This always vanishes. +

+
+
+ +
+
Gradient of the divergence
+
+

+\({\boldsymbol \nabla} ({\boldsymbol \nabla} \cdot {\bf v})\) does not appear often in physics. No special name. +

+
+
+ +
+
Divergence of a curl
+
+

+This always vanishes. +

+
+
+ +
+
Curl of curl
+
+

+\[ +{\boldsymbol \nabla} \times ({\boldsymbol \nabla} \times {\bf v}) = {\boldsymbol \nabla} ({\boldsymbol \nabla} \cdot {\bf v}) - {\boldsymbol \nabla}^2 {\bf v} +\label{Gr(1.47)} +\] +

+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_dc_del.html b/build/c_m_dc_del.html new file mode 100644 index 0000000..0077ff0 --- /dev/null +++ b/build/c_m_dc_del.html @@ -0,0 +1,1900 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The \({\boldsymbol \nabla}\) Operator + + +c.m.dc.del
+
+

+The del/grad/nabla operator is defined as +

+ +

+\[ +{\boldsymbol \nabla} = \hat{\bf x} \frac{\partial}{\partial x} + \hat{\bf y} \frac{\partial}{\partial y} + \hat{\bf z} \frac{\partial}{\partial z} +\label{Gr(1.39)} +\] +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_dc_div.html b/build/c_m_dc_div.html new file mode 100644 index 0000000..217f796 --- /dev/null +++ b/build/c_m_dc_div.html @@ -0,0 +1,1897 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Divergence + + +c.m.dc.div
+
+\begin{align} +{\boldsymbol \nabla} \cdot {\bf v} &= \left( \hat{\bf x} \frac{\partial}{\partial x} + \hat{\bf y} \frac{\partial}{\partial y} + \hat{\bf z} \frac{\partial}{\partial z} \right) +\cdot \left(v_x ~\hat{\bf x} + v_y ~\hat{\bf y} + v_z ~\hat{\bf z} \right) +\nonumber \\ +&= \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}. +\label{Gr(1.40)} +\end{align} +
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_dc_g.html b/build/c_m_dc_g.html new file mode 100644 index 0000000..981e120 --- /dev/null +++ b/build/c_m_dc_g.html @@ -0,0 +1,1921 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Gradient + + +c.m.dc.g
+
+

+Consider a function \(T\) of the 3 variables \(x, y, z\) noted as \(T({\bf r})\). This is commonly known +as a scalar field. +

+ +

+Its change under a displacement by \(d{\bf l}\) is given by +

+ +

+\[ +\Delta_{d{\bf l}} T = T({\bf r} + d{\bf l}) - T({\bf r}) = {\boldsymbol \nabla} T \cdot d{\bf l} + \mbox{O}(dl^2) +\label{Gr(1.35)} +\] +

+ +

+in which +

+ +

+\[ +{\boldsymbol \nabla} T \equiv \frac{\partial T}{\partial x} ~\hat{\bf x} + \frac{\partial T}{\partial y} ~\hat{\bf y} + \frac{\partial T}{\partial z} ~\hat{\bf z} +\label{Gr(1.36)} +\] +

+ +

+is a vector called the gradient of \(T\). +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_dc_pr.html b/build/c_m_dc_pr.html new file mode 100644 index 0000000..26eb7e2 --- /dev/null +++ b/build/c_m_dc_pr.html @@ -0,0 +1,1894 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Product Rules + + +c.m.dc.pr
+
+

+Six product rules (on inside front cover of Gr). +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_dd.html b/build/c_m_dd.html new file mode 100644 index 0000000..9d54abc --- /dev/null +++ b/build/c_m_dd.html @@ -0,0 +1,1896 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Dirac delta Distribution + + +c.m.dd

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_dd_1d.html b/build/c_m_dd_1d.html new file mode 100644 index 0000000..6152489 --- /dev/null +++ b/build/c_m_dd_1d.html @@ -0,0 +1,1908 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The One-Dimensional Dirac Delta Function + + +c.m.dd.1d
+
+
    +
  • \(\delta(x-a) = 0\), \(x \neq a\).
  • + +
  • \(\int dx \delta (x - a) = 1\) if integration region includes \(x = a\), and vanishes otherwise.
  • +
+ +

+Consequences: for any smooth differentiable function \(f(x)\), +

+ +
    +
  • \(\int dx f(x) \delta (x - a) = f(a)\)
  • + +
  • \(\int dx f(x) \delta' (x-a) = -f'(a)\)
  • + +
  • \(\delta (f(x)) = \sum_i \frac{1}{\left| \frac{df}{dx} (x_i)\right|} \delta(x - x_i)\) where \(x_i\) are zeroes of \(f(x)\).
  • +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_dd_3d.html b/build/c_m_dd_3d.html new file mode 100644 index 0000000..b659067 --- /dev/null +++ b/build/c_m_dd_3d.html @@ -0,0 +1,1947 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Three-Dimensional Delta Function + + +c.m.dd.3d
+
+

+\[ +\delta^{(3)} ({\bf r} - {\bf r}') = \delta (x - x') \delta (y - y') \delta (z - z') +\label{Gr(1.96)} +\] +

+ +

+\[ +\int d\tau f({\bf r}) \delta^{(3)} ({\bf r} - {\bf a}) = f({\bf a}) +\label{Gr(1.97)} +\] +

+ +

+Resolution of divergence of \(\hat{\bf r}/r^2\) paradox: +

+ +

+\[ +{\boldsymbol \nabla} \cdot \left(\frac{\hat{\bf r}}{r^2} \right)= 4\pi \delta^{(3)} ({\bf r}). +\label{Gr(1.99)} +\] +

+ +

+More generally, +

+ +

+\[ +\boxed{ +{\boldsymbol \nabla} \cdot \left(\frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} \right)= 4\pi \delta^{(3)} ({\bf r}). +}\label{Gr(1.100)} +\] +

+ +

+Since +

+ +

+\[ +{\boldsymbol \nabla}_1 \left(\frac{1}{r_{12}}\right) = -\frac{\hat{\bf r}_{12}}{r_{12}^2} +\label{Gr(1.101)} +\] +

+ +

+we have that +

+ +

+\[ +{\boldsymbol \nabla}^2 \left( \frac{1}{|{\bf r} - {\bf r}'|} \right) = -4\pi \delta^{(3)} ({\bf r} - {\bf r}') +\label{Gr(1.102)} +\] +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_dd_div.html b/build/c_m_dd_div.html new file mode 100644 index 0000000..7c6a2e7 --- /dev/null +++ b/build/c_m_dd_div.html @@ -0,0 +1,1918 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Divergence of \(\hat{\bf r}/r^2\) + + +c.m.dd.div
+
+

+Try to calculate this directly: +

+ +

+\[ +{\boldsymbol \nabla} \cdot \frac{\hat{\bf r}}{r^2} = \frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{1}{r^2}\right) =^{?} 0 +\label{Gr(1.84)} +\] +

+ +

+Now apply the divergence theorem. +Integrate over a sphere of radius \(R\) centered at the origin (Prob. 1.38b): +

+ + +

+\[ +\oint \frac{\hat{\bf r}}{r^2} \cdot d{\bf a} = \int \left(\frac{1}{R^2} \hat{\bf r} \right) \cdot \left( R^2 \sin \theta d\theta d\phi ~\hat{\bf r} \right) += \int_0^{\pi} d\theta \sin \theta \int_0^{2\pi} d\phi = 4\pi +\label{Gr(1.85)} +\] +

+ +

+Problem: in (1.84), we've divided by zero when \(r = 0\). +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_ic.html b/build/c_m_ic.html new file mode 100644 index 0000000..b14382a --- /dev/null +++ b/build/c_m_ic.html @@ -0,0 +1,1899 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Integral Calculus + + +c.m.ic

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_ic_ftc.html b/build/c_m_ic_ftc.html new file mode 100644 index 0000000..5c28d48 --- /dev/null +++ b/build/c_m_ic_ftc.html @@ -0,0 +1,1897 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Fundamental Theorem of Calculus + + +c.m.ic.ftc
+
+

+\[ +\int_a^b \frac{df}{dx} dx = f(b) - f(a) +\label{Gr(1.54)} +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_ic_ftg.html b/build/c_m_ic_ftg.html new file mode 100644 index 0000000..d8cfae7 --- /dev/null +++ b/build/c_m_ic_ftg.html @@ -0,0 +1,1906 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Fundamental Theorem for Gradients + + +c.m.ic.ftg
+
+

+\[ +{\int_{\bf a}^{\bf b}}_{\cal P} ({\boldsymbol \nabla} T) \cdot d{\bf l} = T({\bf b}) - T({\bf a}). +\label{Gr(1.55)} +\] +

+ +

+Corollary 1: \(\int_{\bf a}^{\bf b} ({\boldsymbol \nabla} T) \cdot d{\bf l}\) is independent of the path taken from \({\bf a}\) to \({\bf b}\). +

+ +

+Corollary 2: \(\oint ({\boldsymbol \nabla} T) \cdot d{\bf l} = 0\) since the beginning and end points coincide. +

+
+
+ + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_ic_gauss.html b/build/c_m_ic_gauss.html new file mode 100644 index 0000000..712c41a --- /dev/null +++ b/build/c_m_ic_gauss.html @@ -0,0 +1,1900 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Gauss' Theorem + + +c.m.ic.gauss
+
+

+\[ +\int_{\cal V} ({\boldsymbol \nabla} \cdot {\bf v}) d\tau = \oint_{\cal S} {\bf v} \cdot d{\bf a}. +\label{Gr(1.56)} +\] +

+ +

+This is know either as Gauss' theorem, Green's theorem or the divergence theorem. +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_ic_ip.html b/build/c_m_ic_ip.html new file mode 100644 index 0000000..7cdda43 --- /dev/null +++ b/build/c_m_ic_ip.html @@ -0,0 +1,1919 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Integration by Parts + + +c.m.ic.ip
+
+

+Example: \({\boldsymbol \nabla} \cdot (f{\bf A}) = f({\boldsymbol \nabla} \cdot {\bf A}) + {\bf A} \cdot ({\boldsymbol \nabla} f)\) implies (via Gauss' theorem) +

+ +

+\[ +∫\cal V {\boldsymbol ∇} ⋅ (f{\bf A}) dτ = ∫\cal V f({\boldsymbol ∇} ⋅ {\bf A}) dτ +

+
    +
  • \cal V {\bf A} ⋅ ({\boldsymbol ∇} f) dτ = \oint f{\bf A} ⋅ d{\bf a},
  • +
+

+\] +

+ +

+or in other words +

+ +

+\[ +∫\cal V f({\boldsymbol ∇} ⋅ {\bf A}) dτ = -∫\cal V {\bf A} ⋅ ({\boldsymbol ∇} f) dτ +

+
    +
  • \oint\cal S f{\bf A} ⋅ d{\bf a}.
  • +
+

+\label{Gr(1.59)} +\] +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_ic_lsv.html b/build/c_m_ic_lsv.html new file mode 100644 index 0000000..423075e --- /dev/null +++ b/build/c_m_ic_lsv.html @@ -0,0 +1,1968 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Line, Surface and Volume Integrals + + +c.m.ic.lsv
+
+
+ +
+
Line Integrals
+
+

+\[ +{\int_{\bf a}^{\bf b}}_{\cal P} {\bf v} \cdot d{\bf l} +\label{Gr(1.48)} +\] +

+ +

+where \({\cal P}\) is a path from point \({\bf a}\) to point \({\bf b}\). +

+ +

+Example: work done by a force, \(W = \int {\bf F} \cdot d{\bf l}\). +

+ +

+Integral over a closed loop: +

+ +

+\[ +\oint {\bf v} \cdot d{\bf l} +\label{Gr(1.49)} +\] +

+
+
+ +
+
Surface Integrals
+
+

+\[ +\int_{\cal S} {\bf v} \cdot d{\bf a} +\label{Gr(1.50)} +\] +

+ +

+Over a closed surface: +

+ +

+\[ +\oint {\bf v} \cdot d{\bf a} +\] +

+
+
+ +
+
Volume Integrals
+
+

+\[ +\int_{\cal V} T d\tau +\label{Gr(1.51)} +\] +

+ +

+In Cartesian coordinates: +

+ +

+\[ +d\tau = dx dy dz +\label{Gr(1.52)} +\] +

+
+
+
+ + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_ic_stokes.html b/build/c_m_ic_stokes.html new file mode 100644 index 0000000..dc50a34 --- /dev/null +++ b/build/c_m_ic_stokes.html @@ -0,0 +1,1907 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Stokes' Theorem + + +c.m.ic.stokes
+
+

+\[ +\int_{\cal S} ({\boldsymbol \nabla} \times {\bf v}) \cdot d{\bf a} = \oint_{\cal P} {\bf v} \cdot d{\bf l}. +\label{Gr(1.57)} +\] +

+ +

+Corollary 1: \(\int ({\boldsymbol \nabla} \times {\bf v}) \cdot d{\bf a}\) depends only on the boundary line +and not on the particular surface used. +

+ +

+Corollary 2: \(\oint ({\boldsymbol \nabla} \times {\bf v}) \cdot d{\bf a}= 0\) for any closed surface, since +the boundary shrinks to a point. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_uf.html b/build/c_m_uf.html new file mode 100644 index 0000000..dc258cb --- /dev/null +++ b/build/c_m_uf.html @@ -0,0 +1,1896 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Useful Formulas + + +c.m.uf

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_uf_cyl.html b/build/c_m_uf_cyl.html new file mode 100644 index 0000000..c90f4fe --- /dev/null +++ b/build/c_m_uf_cyl.html @@ -0,0 +1,1909 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Cylindrical coordinates + + +c.m.uf.cyl
+
+\begin{align*} +\mbox{Gradient:} +&{\boldsymbol \nabla} T = \frac{\partial T}{\partial r}~\hat{\bf r} ++ \frac{1}{r} \frac{\partial T}{\partial \phi}~\hat{\boldsymbol \phi} ++ \frac{\partial T}{\partial z} ~\hat{\bf z} +\nonumber\\ +\mbox{Divergence:} +&{\boldsymbol \nabla} \cdot {\bf v} = \frac{1}{r} \frac{\partial}{\partial r} (r v_r) ++ \frac{1}{r} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial v_z}{\partial z}. +\nonumber\\ +\mbox{Curl:} +&{\boldsymbol \nabla} \times {\bf v} = \left( \frac{1}{r} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_{\phi}}{\partial z}\right) ~\hat{\bf r} ++ \left( \frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r} \right) ~\hat{\boldsymbol \phi} ++ \frac{1}{r} \left( \frac{\partial}{\partial r} (r v_{\phi}) - \frac{\partial v_r}{\partial \phi} \right) ~\hat{\bf z} +\nonumber\\ +\mbox{Laplacian:} +&{\boldsymbol \nabla}^2 T = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial T}{\partial r} \right) ++ \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} + \frac{\partial^2 T}{\partial z^2} +\end{align*} +
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_uf_sph.html b/build/c_m_uf_sph.html new file mode 100644 index 0000000..6e231ab --- /dev/null +++ b/build/c_m_uf_sph.html @@ -0,0 +1,1909 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Spherical coordinates + + +c.m.uf.sph
+
+\begin{align*} +\mbox{Gradient:} +&{\boldsymbol \nabla} T = \frac{\partial T}{\partial r} \hat{\boldsymbol r} + \frac{1}{r} \frac{\partial T}{\partial \theta} \hat{\boldsymbol \theta} ++ \frac{1}{r\sin \theta} \frac{\partial T}{\partial \phi} \hat{\boldsymbol \phi}. +\nonumber \\ +\mbox{Divergence:} +&{\boldsymbol \nabla} \cdot {\bf v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r\sin \theta} \frac{\partial}{\partial \theta} (\sin\theta v_{\theta}) ++ \frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} +\nonumber\\ +\mbox{Curl:} +&{\boldsymbol \nabla} \times {\bf v} = \frac{1}{r\sin \theta} \left[ \frac{\partial}{\partial \theta} (\sin \theta v_{\phi}) - \frac{\partial v_{\theta}}{\partial \phi} \right] \hat{\bf r} ++ \frac{1}{r} \left[ \frac{1}{\sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{\partial}{\partial r} (r v_{\phi}) \right] \hat{\boldsymbol \theta} ++ \frac{1}{r} \left[ \frac{\partial}{\partial r} (r v_{\theta}) - \frac{\partial v_r}{\partial \theta} \right] \hat{\boldsymbol \phi} +\nonumber\\ +\mbox{Laplacian:} +&{\boldsymbol \nabla}^2 T = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r}\right) ++ \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial T}{\partial \theta}\right) ++ \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2} +\end{align*} +
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_uf_vi.html b/build/c_m_uf_vi.html new file mode 100644 index 0000000..25827ea --- /dev/null +++ b/build/c_m_uf_vi.html @@ -0,0 +1,1912 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Vector identities + + +c.m.uf.vi
+
+\begin{align*} +(1)&{\bf A} \cdot ({\bf B} \times {\bf C}) = {\bf B} \cdot ({\bf C} \times {\bf A}) = {\bf C} \cdot ({\bf A} \times {\bf B}) +\nonumber \\ +(2)&{\bf A} \times ({\bf B} \times {\bf C}) = {\bf B} ({\bf A} \cdot {\bf C}) - {\bf C} ({\bf A} \cdot {\bf B}) +\nonumber \\ +(3)&{\boldsymbol \nabla} (fg) = f ({\boldsymbol \nabla} g) + g ({\boldsymbol \nabla} f) +\nonumber \\ +(4)&{\boldsymbol \nabla}({\bf A} \cdot {\bf B}) = {\bf A} \times ({\boldsymbol \nabla} \times {\bf B}) + {\bf B} \times ({\boldsymbol \nabla} \times {\bf A}) + ({\bf A} \cdot {\boldsymbol \nabla}) {\bf B} + ({\bf B} \cdot {\boldsymbol \nabla}) {\bf A} +\nonumber \\ +(5)&{\boldsymbol \nabla} \cdot (f{\bf A}) = f ({\boldsymbol \nabla} \cdot {\bf A}) + {\bf A} \cdot ({\boldsymbol \nabla} f) +\nonumber \\ +(6)&{\boldsymbol \nabla} \cdot ({\bf A} \times {\bf B}) = {\bf B} \cdot ({\boldsymbol \nabla} \times {\bf A}) - {\bf A} \cdot ({\boldsymbol \nabla} \times {\bf B}) +\nonumber \\ +(7)&{\boldsymbol \nabla} \times (f {\bf A}) = f ( {\boldsymbol \nabla} \times {\bf A}) - {\bf A} \times ({\boldsymbol \nabla} f) +\nonumber \\ +(8)&{\boldsymbol \nabla} \times ({\bf A} \times {\bf B}) = ({\bf B} \cdot {\boldsymbol \nabla}) {\bf A} - ({\bf A} \cdot {\boldsymbol \nabla}) {\bf B} + {\bf A} ({\boldsymbol \nabla} \cdot {\bf B}) - {\bf B} ({\boldsymbol \nabla} \cdot {\bf A}) +\nonumber \\ +(9)&{\boldsymbol \nabla} \cdot ({\boldsymbol \nabla} \times {\bf A}) = 0 +\nonumber \\ +(10)&{\boldsymbol \nabla} \times ({\boldsymbol \nabla} f) = 0 +\nonumber \\ +(11)&{\boldsymbol \nabla} \times ({\boldsymbol \nabla} \times {\bf A}) = {\boldsymbol \nabla} ({\boldsymbol \nabla} \cdot {\bf A}) - {\boldsymbol \nabla}^2 {\bf A} +\end{align*} +
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_va.html b/build/c_m_va.html new file mode 100644 index 0000000..19cdab3 --- /dev/null +++ b/build/c_m_va.html @@ -0,0 +1,1898 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Vector Analysis + + +c.m.va

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_va_cp.html b/build/c_m_va_cp.html new file mode 100644 index 0000000..89f3fdf --- /dev/null +++ b/build/c_m_va_cp.html @@ -0,0 +1,1933 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Cross product + + +c.m.va.cp
+
+

+\[ + {\bf A} × {\bf B} = \left| \begin{array}{ccc} \hat{x} & \hat{y} & \hat{z}
+ Ax & Ay & Az \\ Bx & By & Bz \end{array} \right| + = \left( Ay Bz - Az By \right) \hat{x} + \left( Bz Ax - Bx Az \right) \hat{y} +

+
    +
  • \left( Ax By - Ay Bx \right) \hat{z}
  • +
+

+\] +

+ +

+The cross product is distributive: +

+ +

+\[ + {\bf A} \times ({\bf B} + {\bf C}) = {\bf A} \times {\bf B} + {\bf A} \times {\bf C} +\] +

+ +

+The cross-product is anti-commutative: +

+ +

+\[ + {\bf A} \times {\bf B} = - {\bf B} \times {\bf A} +\] +

+ +

+this relation making plain that +

+ +

+\[ + {\bf A} \times {\bf A} = 0. +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_va_n.html b/build/c_m_va_n.html new file mode 100644 index 0000000..1f90070 --- /dev/null +++ b/build/c_m_va_n.html @@ -0,0 +1,1922 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Notation and algebraic properties + + +c.m.va.n
+
+

+Vectors will always be denoted by bold symbols, e.g. \({\bf A}\). +Component notation (in \({\mathbb R}^3\) with cartesian coordinates): +

+ +

+\[ + {\bf A} = \left( \begin{array}{c} + A_x \\ A_y \\ A_z \end{array}\right) +\] +

+ +

+Commutativity and associativity of vector addition +

+ +

+\[ + {\bf A} + {\bf B} = {\bf B} + {\bf A}, \hspace{10mm} + ({\bf A} + {\bf B}) + {\bf C} = {\bf A} + ({\bf B} + {\bf C}) +\] +

+ +

+Distributivity of multiplication by a scalar +

+ +

+\[ + c ({\bf A} + {\bf B}) = c{\bf A} + c{\bf B} +\] +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_va_pds.html b/build/c_m_va_pds.html new file mode 100644 index 0000000..1b429c9 --- /dev/null +++ b/build/c_m_va_pds.html @@ -0,0 +1,1956 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Position, Displacement and Separation Vectors + + +c.m.va.pds
+
+

+Cartesian coordinates. Position vector: +

+ +

+\[ +{\bf r} \equiv x ~\hat{\bf x} + y ~\hat{\bf y} + z ~\hat{\bf z} +\label{Gr(1.19)} +\] +

+ +

+Magnitude +

+ +

+\[ +r = \left[ x^2 + y^2 + z^2 \right]^{1/2} +\label{Gr(1.20)} +\] +

+ +

+Unit radial vector: +

+ +

+\[ +\hat{\bf r} = \frac{\bf r}{r} +\label{Gr(1.21)} +\] +

+ +

+Infinitesimal displacement vector: +

+ +

+\[ +d{\bf l} = dx ~\hat{\bf x} + dy ~\hat{\bf y} + dz ~\hat{\bf z} +\label{Gr(1.22)} +\] +

+ +

+Separation vector: for two position vectors \({\bf r}_a, {\bf r}_b\), +

+ +

+\[ +{\bf r}_{ab} \equiv {\bf r}_a - {\bf r}_b +\label{Gr(1.23)NOT} +\] +

+ + +

+NOTE: I WILL NOT USE THE …ING GRIFFITHS CURLY \(r\) notation! +

+ +
    +
  • it is ambiguous and non self-evident
  • +
  • it is not standard, and I strongly discourage its use!
  • +
  • it doesn't save time (proof: Griffiths keeps repeating it again and again)
  • +
  • it is impossible to do reliably on the blackboard (especially with my handwriting!)
  • +
  • when you speak, there is no difference between Griffiths' \(r\) and \(r\)!
  • +
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_va_sp.html b/build/c_m_va_sp.html new file mode 100644 index 0000000..ef1aa6c --- /dev/null +++ b/build/c_m_va_sp.html @@ -0,0 +1,1922 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Scalar product + + +c.m.va.sp
+
+

+Cartesian coordinates in \({\mathbb R}^3\): +

+ +

+\[ + {\bf A} \cdot {\bf B} = + \left( \begin{array}{ccc} A_x & A_y & A_z \end{array} \right) + \left(\begin{array}{c} B_x \\ B_y \\ B_z \end{array} \right) = A_x B_x + A_y B_y + A_z B_z +\] +

+ +

+The scalar product is commutative and distributive: +

+ +

+\[ + {\bf A} \cdot {\bf B} = {\bf B} \cdot {\bf A}, \hspace{10mm} + {\bf A} \cdot ({\bf B} + {\bf C}) = {\bf A} \cdot {\bf B} + {\bf A} \cdot {\bf C} +\] +

+ +

+In a general coordinate system with metric \(g\), +

+ +

+\[ + {\bf A} \cdot {\bf B} = \sum_{\mu, \nu} g^{\mu \nu} A_\mu B_\nu +\] +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_va_tp.html b/build/c_m_va_tp.html new file mode 100644 index 0000000..0f0545d --- /dev/null +++ b/build/c_m_va_tp.html @@ -0,0 +1,1969 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Triple Products + + +c.m.va.tp
+
+

+Scalar triple product +

+ +

+\(| {\bf A} \cdot ({\bf B} \times {\bf C}) |\) is the volume of the parallelepiped subtended by \({\bf A}, {\bf B}\) and \({\bf C}\). +

+ +

+The scalar triple product is preserved under cyclic reordering: +

+ +

+\[ + {\bf A} \cdot ({\bf B} \times {\bf C}) = {\bf B} \cdot ({\bf C} \times {\bf A}) = {\bf C} \cdot ({\bf A} \times {\bf B}) + \label{VectAn:TripleProduct} + %\label{Gr(1.15)} +\] +

+ +

+Useful form: +

+ +

+\[ + {\bf A} \cdot ({\bf B} \times {\bf C}) = \left| \begin{array}{ccc} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{array} \right| + \label{VectAn:TripleProductAsDet} + %\label{Gr(1.16)} +\] +

+ +

+The order can be interchanged: +

+ +

+\[ +{\bf A} \cdot ({\bf B} \times {\bf C}) = ({\bf A} \times {\bf B}) \cdot {\bf C} +\label{Gr(1.16)} +\] +

+ +

+Vector triple product +

+ +

+\[ +{\bf A} \times ({\bf B} \times {\bf C}) = {\bf B} ({\bf A} \cdot {\bf C}) - {\bf C} ({\bf A} \cdot {\bf B}) +\label{Gr(1.17)} +\] +

+ +

+Nota bene: +

+ +

+\[ +({\bf A} \times {\bf B}) \times {\bf C} = -{\bf A} ({\bf B} \cdot {\bf C}) + {\bf B} ({\bf A} \cdot {\bf C}) +\] +

+ +

+is a different vector. The cross-product is {\bf not} associative in general +but obeys the more general relation +

+ +

+\[ + {\bf A} \times ({\bf B} \times {\bf C}) + {\bf B} \times ({\bf C} \times {\bf A}) + {\bf C} \times ({\bf A} \times {\bf B}) = 0 +\] +

+ +

+All higher vector products can be reduced to combinations of single vector product terms. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_vf.html b/build/c_m_vf.html new file mode 100644 index 0000000..1f8d816 --- /dev/null +++ b/build/c_m_vf.html @@ -0,0 +1,1895 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Vector Fields + + +c.m.vf

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_vf_helm.html b/build/c_m_vf_helm.html new file mode 100644 index 0000000..e594c1e --- /dev/null +++ b/build/c_m_vf_helm.html @@ -0,0 +1,1914 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Helmholtz Theorem + + +c.m.vf.helm
+
+

+Consider a fixed vector field \({\bf F} = {\bf F}(x, y, z) = {\bf F}({\bf r})\). Assume that +the functions \({\boldsymbol \nabla} \cdot {\bf F} = D({\bf r})\) and \({\boldsymbol \nabla} \times {\bf F} = {\bf C} ({\bf r})\) +are given to us everywhere within a finite volume \({\cal V}\) (for consistency, \({\bf C}\) must be divergenceless, +\({\boldsymbol \nabla} \cdot {\bf C} = 0\)). Then, +

+ +

+\[ +{\bf F} ({\bf r}) = -{\boldsymbol \nabla} \phi ({\bf r}) + {\boldsymbol \nabla} \times {\bf A} ({\bf r}) +\] +

+ +

+where +

+ +

+\[ +\phi({\bf r}) = \frac{1}{4\pi} \int_{\cal V} \frac{D({\bf r}') d\tau'}{|{\bf r} - {\bf r}'|}, +\hspace{1cm} +{\bf A} ({\bf r}) = \frac{1}{4\pi} \int_{\cal V} \frac{{\bf C}({\bf r}') d\tau'}{|{\bf r} - {\bf r}'|}. +\] +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/c_m_vf_pot.html b/build/c_m_vf_pot.html new file mode 100644 index 0000000..60e44bf --- /dev/null +++ b/build/c_m_vf_pot.html @@ -0,0 +1,1943 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Potentials + + +c.m.vf.pot
+
+

+If the curl of a vector field \({\bf F}\) vanishes, then \({\bf F}\) can be written as the gradient of a +scalar potential \(V\): +

+ +

+\[ +{\boldsymbol \nabla} \times {\bf F} = 0 \Longleftrightarrow {\bf F} = -{\boldsymbol \nabla} V +\label{Gr(1.103)} +\] +

+
+ +
+
Theorem 1: Curl-less (irrotational) fields
+
+

+The following conditions are equivalent: +

+ +
    +
  • (a) \({\boldsymbol \nabla} \times {\bf F} = 0\) everywhere.
  • + +
  • (b) \(\int_{\bf a}^{\bf b} {\bf F} \cdot d{\bf l}\) is independent of path for any given end points.
  • + +
  • (c) \(\oint {\bf F} \cdot d{\bf l} = 0\) for any closed loop.
  • + +
  • (d) \({\bf F}\) is the gradient of some scalar field, \({\bf F} = -{\boldsymbol \nabla}V\).
  • +
+ +

+If the divergence of a vector field \({\bf F}\) vanishes, then \({\bf F}\) can be expressed as the curl +of a {\bf vector potential} \({\bf A}\). +

+
+
+ +
+
Theorem 2: Divergence-less (solenoidal) fields
+
+

+The following conditions are equivalent: +

+ +
    +
  • (a) \({\boldsymbol \nabla} \cdot {\bf F} = 0\) everywhere.
  • + +
  • (b) \(\int {\bf F} \cdot d{\bf a}\) is independent of surface, for any given boundary line.
  • + +
  • (c) \(\oint {\bf F} \cdot d{\bf a} = 0\) for any closed surface.
  • + +
  • (d) \({\bf F}\) is the curl of some vector, \({\bf F} = {\boldsymbol \nabla} \times {\bf A}\).
  • +
+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d.html b/build/d.html new file mode 100644 index 0000000..c6f5567 --- /dev/null +++ b/build/d.html @@ -0,0 +1,1936 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Diagnostics + + +d

+ +
+
+ +Objectives + + +

+This chapter is a module-by-module list of the core concepts which +you should be comfortable with. Use it as a diagnostics guide to assess how +well you understand the material. +

+ +

+So my suggestion is: take a number of blank sheets of paper, +and try to do the things that are suggested from the top of your head, +i.e. without looking +at any of your notes, books, internet or whatever. +This should help you identify holes in your comprehension and thus +clarify what your study priorities are. +

+ +

+Note/warning: this is in some sense the minimal +stuff you should have assimilated. +The things listed here are by no means exhaustive of the +subject matter, or of the full examinable material. +If you do understand everything here and are able to apply it, +I have little doubt you'll pass the course. +

+
+
+ + + + + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d_emd.html b/build/d_emd.html new file mode 100644 index 0000000..59476a9 --- /dev/null +++ b/build/d_emd.html @@ -0,0 +1,1916 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Diagnostics: Electromagnetodynamics + + +d.emd

+
+

+Fundamentals: +After properly studying this module, you should be able to: +

+
    +
  • give the definition of the electromotive force
  • +
  • state Faraday's law (integral and differential forms)
  • +
  • define inductance and self-inductance
  • +
  • write down the formula for the energy of a magnetic field
  • +
  • define the displacement current
  • +
  • state Maxwell's modification to Ampère's law
  • +
  • write the four Maxwell equations (in vacuum)
  • +
  • define the polarization current density
  • +
  • write the four Maxwell equations (in matter)
  • +
+ + +

+Applications: +As a strict minimum, you should be able to: +

+
    +
  • derive the boundary conditions for EM fields at the interface between two different media
  • +
+
+
+ + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d_emd_ce.html b/build/d_emd_ce.html new file mode 100644 index 0000000..54aa76a --- /dev/null +++ b/build/d_emd_ce.html @@ -0,0 +1,1911 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Diagnostics: Conservation Laws + + +d.emd.ce

+
+

+Fundamentals: +After properly studying this module, you should be able to: +

+
    +
  • derive the continuity equation from Maxwell's equations
  • +
  • define the Poynting vector
  • +
  • give the formula for the energy in EM fields
  • +
  • state Poynting's theorem (integral and differential form)
  • +
+ + +

+Applications: +As a strict minimum, you should be able to: +

+
    +
  • rederive the energy balance for Joule heating of a wire
  • +
+
+
+ + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d_emd_emw.html b/build/d_emd_emw.html new file mode 100644 index 0000000..849e3ee --- /dev/null +++ b/build/d_emd_emw.html @@ -0,0 +1,1914 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Diagnostics: Electromagnetic Waves + + +d.emd.emw

+
+

+Fundamentals: +After properly studying this module, you should be able to: +

+
    +
  • obtain the wave equations for electric and magnetic fields in vacuum starting from Maxwell's equations
  • +
  • give the form of \({\boldsymbol E}\) and \({\boldsymbol B}\) fields for a monochromatic plane wave
  • +
  • for linear media, obtain the wave equations
  • +
  • explain how waveguides work
  • +
+ + +

+Applications: +As a strict minimum, you should be able to: +

+
    +
  • compute the Poynting vector for a monochromatic plane wave
  • +
  • rederive the formulas for fields and reflection/transmission coefficients for an EM wave hitting an interface at normal incidence
  • +
  • rederive the laws of reflection and of refraction (Snell's law)
  • +
  • get the reflection and transmission coefficients for the above
  • +
+
+
+ + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d_emf.html b/build/d_emf.html new file mode 100644 index 0000000..009c5f0 --- /dev/null +++ b/build/d_emf.html @@ -0,0 +1,1911 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Diagnostics: Potentials, Gauges and Fields + + +d.emf

+
+

+Fundamentals: +After properly studying this module, you should be able to: +

+
    +
  • give the equations for electric and magnetic fields in terms of the scalar and vector potentials
  • +
  • give the Lorenz gauge
  • +
  • give the definition of the d'Alembertian operator
  • +
  • give the inhomogeneous Maxwell equations (in the language of scalar and vector potentials, in the Lorenz gauge)
  • +
+ + +

+Applications: +As a strict minimum, you should be able to: +

+
    +
  • rederive how gauge transformations look like for scalar and vector potentials
  • +
+
+
+ + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d_ems.html b/build/d_ems.html new file mode 100644 index 0000000..d113771 --- /dev/null +++ b/build/d_ems.html @@ -0,0 +1,1933 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Diagnostics: Electromagnetostatics + + +d.ems

+
+

+Fundamentals: +After properly studying this module, you should be able to: +

+ +
    +
  • write down Coulomb's law
  • +
  • state the principle of superposition
  • +
  • write down the electrostatic field at \({\bf r}\) +generated by a set of point charges \(q_i\) at \({\bf r}_i\)
  • +
  • write down the electrostatic field at \({\bf r}\) +generated by a continuous charge distribution \(\rho ({\bf r}')\)
  • +
  • write down the electrostatic potential at \({\bf r}\) +generated by a set of point charges \(q_i\) at \({\bf r}_i\)
  • +
  • write down the relationship between the electrostatic field and the electrostatic potential, in both differential and integral forms
  • +
  • write down the curl of an electrostatic field
  • +
  • write down the electrostatic potential at \({\bf r}\) +generated by a continuous charge distribution \(\rho ({\bf r}')\)
  • +
  • write down Gauss' law in integral form
  • +
  • write down Gauss' law in differential form
  • +
  • write down Poisson's equation
  • +
  • write down Laplace's equation
  • +
  • write down the formula for the energy of an electrostatic field
  • +
  • state the basic properties of a conductor
  • +
+ + +

+Applications: +As a strict minimum, you should be able to: +

+ +
    +
  • using Gauss' law, calculate the electrostatic field at any point \({\bf r}\) originating from +
      +
    • a charged ball with uniform charge density \(\rho\)
    • +
    • an infinite line charge with linear charge density \(\lambda\)
    • +
    • an infinite charged plane with surface charge density \(\sigma\)
    • +
    +
  • +
+
+
+ + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d_ems_ca.html b/build/d_ems_ca.html new file mode 100644 index 0000000..3e5442b --- /dev/null +++ b/build/d_ems_ca.html @@ -0,0 +1,1916 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Diagnostics: Calculating or Approximating the Electostatic Potential + + +d.ems.ca

+
+

+Fundamentals: +After properly studying this module, you should be able to: +

+ +
    +
  • state the uniqueness theorem for solutions to Poisson's equation
  • +
  • explain the method of images
  • +
  • explain the method of separation of variables
  • +
  • write down the monopole and dipole terms of a general charge distribution \(\rho ({\bf r})\)
  • +
+ + +

+Applications: +As a strict minimum, you should be able to: +

+ +
    +
  • for all points \({\bf r}\), write down the electrostatic potential generated by +a point source charge \(q\) at \({\bf r}_s\) with an infinite grounded conducting plane at \(z = 0\)
  • +
  • write down the generic solution to Laplace's equation for an infinitely long rectangular pipe with the four edges at arbitrary potentials (no need to solve it: just write down the generic solution, and the boundary conditions which would in principle fix all the parameters)
  • +
  • reproduce the solution for the potential generated by a sphere with surface charge density \(\sigma_0 (\theta)\) (in the example in the notes, which you can here use for inspiration)
  • +
  • sketch the electric field of a dipole
  • +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d_ems_ms.html b/build/d_ems_ms.html new file mode 100644 index 0000000..60d7b83 --- /dev/null +++ b/build/d_ems_ms.html @@ -0,0 +1,1913 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Diagnostics: Magnetostatics + + +d.ems.ms

+
+

+Fundamentals: +After properly studying this module, you should be able to: +

+
    +
  • state the Lorentz force law
  • +
  • state the continuity equation
  • +
  • state the Biot-Savart law
  • +
  • give the divergence of the magnetic field
  • +
  • State Ampère's law
  • +
  • state the relationship between the vector potential and the magnetic field
  • +
  • state the formula for the magnetic dipole moment of a current loop
  • +
  • state the formula for the dipole term of the vector potential
  • +
+ +

+Applications: +As a strict minimum, you should be able to: +

+
    +
  • from Ampère's law, compute the magnetic field for simple geometries: infinite wire, uniform surface current, solenoid
  • +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d_emsm.html b/build/d_emsm.html new file mode 100644 index 0000000..59fe755 --- /dev/null +++ b/build/d_emsm.html @@ -0,0 +1,1916 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Diagnostics: Electromagnetostatics in Matter + + +d.emsm

+
+

+Fundamentals: +After properly studying this module, you should be able to: +

+
    +
  • state what the polarization of an object is
  • +
  • give the relationship between polarization and surface/volume bound charges
  • +
  • explain the concept of free charge
  • +
  • state the definition of the electric displacement
  • +
  • state Gauss's law relating displacement and free charge density (in both differential and integral form)
  • +
  • explain what a linear dielectric is
  • +
  • explain what the electric susceptibility, permittivity and dielectric constant of a material are
  • +
+ + +

+Applications: +As a strict minimum, you should be able to: +

+
    +
  • using Gauss's law, derive the displacement for all basic geometries (sphere, plate capacitor, wire with dielectric cladding)
  • +
  • derive boundary conditions for the displacement
  • +
  • calculate the change in capacitance of a parallel plate capacitor filled with dielectric (as compared to one filled with vacuum)
  • +
  • derive boundary conditions for fields or potentials at the interface between two dielectrics
  • +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d_emsm_msm.html b/build/d_emsm_msm.html new file mode 100644 index 0000000..3ad2bb5 --- /dev/null +++ b/build/d_emsm_msm.html @@ -0,0 +1,1914 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Diagnostics: Magnetostatics in Matter + + +d.emsm.msm

+
+

+Fundamentals: +After properly studying this module, you should be able to: +

+
    +
  • give the definition of magnetization
  • +
  • explain the difference between paramagnets, diamagnets and ferromagnets
  • +
  • state the formula for the torque on a magnetic dipole in a uniform field
  • +
  • state the formula for bound volume current and bound surface current in terms of the magnetization
  • +
  • give the definition of the \({\boldsymbol H}\) field
  • +
  • state Ampère's law in terms of \({\boldsymbol H}\) (differential and integral forms)
  • +
  • give the definition of susceptibility and permeability for linear media
  • +
+ + +

+Applications: +As a strict minimum, you should be able to: +

+
    +
  • compute \({\boldsymbol H}\) for simple geometries
  • +
+
+
+ + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d_m.html b/build/d_m.html new file mode 100644 index 0000000..d38b497 --- /dev/null +++ b/build/d_m.html @@ -0,0 +1,1924 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Diagnostics: Mathematical Preliminaries + + +d.m

+
+

+Things you should be completely at ease with: +

+ +
    +
  • vectors and their algebra
  • +
  • the representation of vectors in Cartesian, spherical and cylindrical coordinate systems (including the required basic trigonometry)
  • +
  • differentiation and integration of scalar and vector fields (including manipulations such as changes of variables and integration by parts)
  • +
+ + +

+Fundamentals: +Things you should be able to do (ideally: from scratch, on a blank sheet of paper): +

+ +
    +
  • write the gradient of a function \(f({\bf r})\) in Cartesian coordinates
  • +
  • write the divergence of a vector field \({\bf F} ({\bf r})\) in Cartesian coordinates
  • +
  • write the curl of a vector field \({\bf F} ({\bf r})\) in Cartesian coordinates
  • +
  • write the Laplacian of a function \(f({\bf r})\) in Cartesian coordinates
  • +
  • write the Laplacian of a vector field \({\bf F} ({\bf r})\) in Cartesian coordinates
  • +
  • write the transformation law from Cartesian to spherical coordinates
  • +
  • write the Jacobian for the transformation from Cartesian to spherical coordinates
  • +
  • write the transformation law from Cartesian to cylindrical coordinates
  • +
  • write the Jacobian for the transformation from Cartesian to cylindrical coordinates
  • +
  • Gauss' theorem (also know as the divergence theorem)
  • +
  • write Stokes' theorem
  • +
  • use the Dirac delta function in one, two and three dimensions
  • +
+
+
+ + + + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/d_red.html b/build/d_red.html new file mode 100644 index 0000000..ec16a18 --- /dev/null +++ b/build/d_red.html @@ -0,0 +1,1918 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Diagnostics: Relativistic Electrodynamics + + +d.red

+
+

+Fundamentals: +After properly studying this module, you should be able to: +

+
    +
  • state the postulates of Special Relativity
  • +
  • give the definition of the time dilation factor \(\gamma\)
  • +
  • state the formula for Lorentz contraction
  • +
  • write down the Minkowski metric
  • +
  • explain invariant intervals, spacelike, timelike and lightlike intervals
  • +
  • give the definition of the proper velocity
  • +
  • define the four-velocity and the energy-momentum four-vector
  • +
  • write down the electromagnetic field tensor
  • +
  • state its Lorentz transformation rules
  • +
  • give the definition of the current density four-vector
  • +
  • state the continuity equation in tensor notation
  • +
  • state Maxwell's equations (Lorenz gauge, four-vector notation)
  • +
+ + +

+Applications: +As a strict minimum, you should be able to: +

+
    +
  • rederive the formula for a Lorentz transformation for motion along a given axis
  • +
  • rederive the formula for motion under a constant force
  • +
  • rederive law for Lorentz transformation of EM fields
  • +
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd.html b/build/emd.html new file mode 100644 index 0000000..c065f85 --- /dev/null +++ b/build/emd.html @@ -0,0 +1,1923 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electromagnetodynamics + + +emd

+ +
+
+ +Prerequisites + +
    +
  • Electrostatics
  • +
  • Magnetostatics
  • +
+
+ +
+ +Objectives + +
    +
  • Know Faraday's law of induction (in integral and differential form)
  • +
  • Understand the electromotive force
  • +
  • Know Lenz's law
  • +
  • Know how to exploit the parallel between Amp{\`e}re's law and Faraday's law
  • +
  • Understand the concept of inductance
  • +
  • Know the formula for the energy in magnetic fields
  • +
  • Know the concept of the displacement current
  • +
  • Know Maxwell's equations in vacuum
  • +
+
+
+ + + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_Fl.html b/build/emd_Fl.html new file mode 100644 index 0000000..2b507e2 --- /dev/null +++ b/build/emd_Fl.html @@ -0,0 +1,1897 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Induction: Faraday's Law + + +emd.Fl

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_Fl_Fl.html b/build/emd_Fl_Fl.html new file mode 100644 index 0000000..5b35c8b --- /dev/null +++ b/build/emd_Fl_Fl.html @@ -0,0 +1,1988 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Faraday's Law + + +emd.Fl.Fl

+
+

+1831: 3 experiments by Faraday (according to Griffiths! but it's historically incorrect) +\paragraph{1)} Pull a loop of wire through a magnetic field. +\paragraph{2)} Move magnet around a still loop. +\paragraph{3)} Change strength of field, holding magnet and loop still. +

+ + +

+Actually, historically, things didn't happen like that. +The first experiment that Faraday performed (1831) involved two metal coils wound +on opposite sides of a metal ring. When a current was turned on through the first +coil, it generated a transient current in the second coil (as measured by a +galvanometer). Within the next few months he had come up with lots of variations +on this idea. Faraday observed transient current in a circuit when: +

+ +
    +
  • a steady current flowing in an adjacent circuit was turned on or off;
  • +
  • an adjacent circuit with current was moved relative to the first;
  • +
  • a permanent magnet was thrust through circuit.
  • +
+ + +

+Faraday's big insight was to summarize these effects by noticing that +

+ +

+\[ + \boxed{ + \mbox{\bf A changing magnetic field induces an electric field} + } +\] +

+ +

+Empirically: the changing magnetic field induces an electric current around +the circuit. This current is really driven by an electric field having a component +along the wire. The line integral of this field is called the +

+
+

+Electromotive force (or electromotance), + \[ + {\cal E} \equiv \oint_{\cal P} {\bf E} \cdot d{\bf l}. + \] +

+ +
+

+You can think of the emf in different ways. It's the energy accumulated as a unit charge is moved around the circuit; altenatively, if you cut the wire, it would be the voltage you would measure between the two ends. +

+ +

+The precise statement is that the electromotive force is proportional +to the rate of change of the magnetic flux, +\[ +{\cal E} = \oint_{\cal P} {\bf E} \cdot d{\bf l} = -\frac{d\Phi}{dt} +\label{Gr(7.14)} +\] +so we obtain +

+
+

+Faraday's law (integral form N.B.: for a stationary loop) + \[ + \oint_{\cal P} {\bf E} \cdot d{\bf l} = -\int_{\cal S} \frac{\partial {\bf B}}{\partial t} \cdot d{\bf a} + \label{Gr(7.15)} + \] +

+ +
+

+Note that Faraday's law is valid +for any loop (on a wire or not). Using Stokes' theorem, +\[ +\oint_{\cal P} {\bf E} \cdot d{\bf l} = \int_{\cal S} ({\boldsymbol \nabla} \times {\bf E}) \cdot d{\bf a}, +\] +we obtain +

+
+

+Faraday's law (differential form) + \[ + {\boldsymbol \nabla} \times {\bf E} = -\frac{\partial {\bf B}}{\partial t} + \label{Gr(7.16)} + \] +

+ +
+

+Right-hand rule always sorts signs out. Easier rule: {\bf Lenz's law}, which +states that {\bf nature resists a change in flux}. This is in fact just +{\bf Le Ch\atelier's principle} of any action at an equilibrium point leading +to an opposing counter-reaction. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_Fl_e.html b/build/emd_Fl_e.html new file mode 100644 index 0000000..5d3cfbc --- /dev/null +++ b/build/emd_Fl_e.html @@ -0,0 +1,1990 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Energy in Magnetic Fields + + +emd.Fl.e

+
+

+Work per unit time in current loop: +\[ +\frac{dW}{dt} = -{\cal E} I = L I \frac{dI}{dt} +\] +Start from zero current, integrate in time: +\[ +W = \frac{1}{2} L I^2 +\label{Gr(7.29)} +\] +Nicer way (generalizable to surface and volume currents): from (\ref{Gr(7.25)}), flux through loop is \(\Phi = L I\). But +\[ +\Phi = \int_{\cal S} {\bf B} \cdot d{\bf a} = \int_{\cal S} ({\boldsymbol \nabla} \times {\bf A}) \cdot d{\bf a} += \oint_{\cal P} {\bf A} \cdot d{\bf l}, +\] +so +\[ +LI = \oint {\bf A} \cdot d{\bf l} +\] +and +\[ +W = \frac{1}{2} I \oint {\bf A} \cdot d{\bf l} = \frac{1}{2} \oint ({\bf A} \cdot {\bf I}) dl +\label{Gr(7.30)} +\] +Generalization to volume currents: +\[ +W = \frac{1}{2} \int_{\cal V} ({\bf A} \cdot {\bf J}) d\tau +\label{Gr(7.31)} +\] +Even better: use Ampère, \({\boldsymbol \nabla} \times {\bf B} = \mu_0 {\bf J}\): +\[ +W = \frac{1}{2\mu_0} \int_{\cal V} {\bf A} \cdot ({\boldsymbol \nabla} \times {\bf B}) d\tau +\label{Gr(7.32)} +\] +Integrate by parts using product rule 6: +\[ +{\boldsymbol ∇} ⋅ ({\bf A} × {\bf B}) = {\bf B} ⋅ ({\boldsymbol ∇} × {\bf A}) +

+
    +
  • {\bf A} ⋅ ({\boldsymbol ∇} × {\bf B}),
  • +
+

+\] +so +\[ +{\bf A} ⋅ ({\boldsymbol ∇} × {\bf B}) = {\bf B} ⋅ {\bf B} +

+
    +
  • {\boldsymbol ∇} ⋅ ({\bf A} × {\bf B}).
  • +
+

+\] +Then, +\[ +W = \frac{1}{2\mu_0} \left[ \int_{\cal V} d\tau B^2 - \int_{\cal V} d\tau {\boldsymbol \nabla} \cdot ({\bf A} \times {\bf B}) \right] += \frac{1}{2\mu_0} \left[ \int_{\cal V} d\tau B^2 - \oint_{\cal S} d{\bf a} \cdot ({\bf A} \times {\bf B}) \right] +\label{Gr(7.33)} +\] +We can integrate over all space: after neglecting boundary terms (assuming fields fall to zero at infinity), we are left with +

+
+

+\[ + W_{mag} = \frac{1}{2\mu_0} \int d\tau B^2 + \label{Gr(7.34)} + \] +

+ +
+ + +

+Summary: energy in electric and magnetic fields: +

+\begin{align} +W_{elec} = \frac{1}{2} \int d\tau V\rho = \frac{\varepsilon_0}{2} \int d\tau E^2, \hspace{2cm} +\mbox{(2.43 and 2.45)}, \\ +W_{mag} = \frac{1}{2} \int d\tau ({\bf A} \cdot {\bf J}) = \frac{1}{2\mu_0} \int d\tau B^2, +\hspace{2cm} \mbox{(7.31 and 7.34)} +\end{align} + +
+

+\paragraph{Example 7.13:} coaxial cable (inner cylinder radius \(a\), outer \(b\)) carries current \(I\). +Find energy stored in section of length \(l\). +\paragraph{Solution:} from Ampère, +\[ + {\bf B} = \frac{\mu_0 I}{2\pi s} \hat{\boldsymbol \phi}, \hspace{1cm} a < s < b, \hspace{1cm} + {\bf B} = 0, \hspace{1cm} s < a ~\mbox{or}~ s > b. + \] +Energy is thus +\[ + W_{mag} = \frac{1}{2\mu_0} \int_0^{2\pi} d\phi \int_0^l dz \int_a^b s ds \left(\frac{\mu_0 I}{2\pi s}\right)^2 + = \frac{\mu_0 I^2 l}{4\pi} \ln \frac{b}{a}. + \] +

+ +
+

+Note: gives easy way to find inductance, since \(W = \frac{1}{2} L I^2\). +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_Fl_i.html b/build/emd_Fl_i.html new file mode 100644 index 0000000..de8c289 --- /dev/null +++ b/build/emd_Fl_i.html @@ -0,0 +1,2026 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Inductance + + +emd.Fl.i

+
+

+Thinking of Faraday's experiments. +Two loops of wire. From Biot-Savart, flux \(\Phi_2\) of \({\bf B}_1\) through loop 2 +is (using fact that \({\bf B}_1\) is proportional to \(I_1\)) +\[ +\Phi_2 = \int {\bf B}_1 \cdot d{\bf a}_2 \Longrightarrow +\Phi_2 = M_{21} I_1 +\] +where \(M_{21}\) is the {\bf mutual inductance} of the two loops. +

+ +

+Useful formula: +\[ +\Phi_2 = \int {\bf B}_1 \cdot d{\bf a}_2 = \int ({\boldsymbol \nabla} \times {\bf A}_1) \cdot d{\bf a}_2 += \oint {\bf A}_1 \cdot d{\bf l}_2 +\] +But from (\ref{Gr(5.63)}), +\[ +{\bf A}_1 ({\bf r}) = \frac{\mu_0 I_1}{4\pi} \oint_{{\cal P}_1} \frac{d{\bf l}_1}{|{\bf r} - {\bf r}_1|} +\] +so +\[ +\Phi_2 = \frac{\mu_0 I_1}{4\pi} \oint_{{\cal P}_2} d{\bf l}_2 \cdot +\left(\oint_{{\cal P}_1} \frac{d{\bf l}_1 }{|{\bf r}_2 - {\bf r}_1|}\right) +\] +and we can write the mutual inductance as the {\bf Neumann formula}, +\[ +M_{21} = \frac{\mu_0}{4\pi} \oint_{{\cal P}_1} \oint_{{\cal P}_2} \frac{d{\bf l}_1 \cdot d{\bf l}_2} +{|{\bf r}_1 - {\bf r}_2|} +\label{Gr(7.22)} +\] +Two things: +first, \(M_{21}\) is purely geometrical. Second, +\[ +M_{12} = M_{21} +\label{Gr(7.23)} +\] +

+ +
+

+\paragraph{Example 7.10:} +short solenoid (length \(l\), radius \(a\), \(n_1\) turns per unit length) lies concentrically inside +a very long solenoid (radius \(b\), \(n_2\) turns per unit length). Current \(I\) in short solenoid. +What is flux through long solenoid ? +\paragraph{Solution:} complicated to calculate \({\bf B}_1\). Use mutual inductance, starting from +the reverse situation: current \(I\) on outer solenoid, calculate flux through inner one. +Field of outer solenoid: from (\ref{Gr(5.57)}), +\[ + B = \mu_0 n_2 I + \] +so flux through a single loop of inner solenoid is +\[ + B \pi a^2 = \mu_0 n_2 I \pi a^2. + \] +For \(n_1 l\) turns in total, total flux through inner solenoid is +\[ + \Phi = \mu_0 \pi a^2 n_1 n_2 l I. + \] +Same as flux through outer solenoid if inner one has current \(I\). Mutual inductance is here +\[ + M = \mu_0 \pi a^2 n_1 n_2 l. + \] +

+ +
+ + +

+What if we vary current in loop 1? Flux in 2 will vary. Induces EMF in loop 2: +\[ +{\cal E} = -\frac{d\Phi_2}{dt} = -M \frac{dI_1}{dt}. +\label{Gr(7.24)} +\] +Changing current also induces EMF in the source loop itself: +\[ +\Phi = L I +\label{Gr(7.25)} +\] +where \(L\) is the {\bf self-inductance} (or inductance) of the loop. Depends only on +geometry. Changing current induces EMF of +\[ +{\cal E} = -L \frac{dI}{dt} +\label{Gr(7.26)} +\] +Inductance: measured in {\bf henries} (\(H\)). \(H = V s/A\). +

+ + +
+

+\paragraph{Example 7.11:} find self-inductance of toroidal coil with +rectangular cross-section (inner radius \(a\), outer radius \(b\), height \(h\)) +which carries total of \(N\) turns. +\paragraph{Solution:} magnetic field inside toroid is (\ref{Gr(5.58)}) +\[ + B = \frac{\mu_0 NI}{2\pi s} + \] +Flux through single turn: +\[ + \int {\bf B} \cdot d{\bf a} = \frac{\mu_0 N I}{2\pi} h \int_a^b \frac{ds}{s} + = \frac{\mu_0 N I h}{2\pi} \ln \frac{b}{a}. + \] +Total flux: \(N\) times this, so self-inductance is +\[ + L = \frac{\mu_0 N^2 h}{2\pi} \ln \frac{b}{a} + \label{Gr(7.27)} + \] +

+ +
+ +

+Inductance (like capacitance) is intrinsically positive. Use Lenz law. Think of {\bf back EMF}. +

+ +
+

+\paragraph{Example 7.12:} circuit with inductance \(L\), resistor \(R\) and battery \({\cal E}_0\). +What is the current ? +\paragraph{Solution:} +Ohm's law: +\[ + {\cal E}_0 - L \frac{dI}{dt} = IR \Longrightarrow I(t) = \frac{{\cal E}_0}{R} + k e^{-(R/L)t}. + \] +If initial condition: \(I(0) = 0\), then +\[ + I(t) = \frac{{\cal E}_0}{R} \left[ 1 - e^{-(R/L)t} \right] + \label{Gr(7.28)} + \] +where \(\tau \equiv L/R\) is the {\bf time constant} of the circuit. +

+ +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_Fl_ief.html b/build/emd_Fl_ief.html new file mode 100644 index 0000000..3150c9d --- /dev/null +++ b/build/emd_Fl_ief.html @@ -0,0 +1,1992 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

The Induced Electric Field + + +emd.Fl.ief

+
+

+Two sources of electric fields: electric charges, and changing magnetic fields. +

+ +

+Electric fields induced by a changing magnetic field are determined in an exactly +parallel way as magnetostatic fields from the current: exploit parallel +between Ampère and Faraday! +\[ +{\boldsymbol \nabla} \times {\bf B} = \mu_0 {\bf J} +\hspace{3cm} +{\boldsymbol \nabla} \times {\bf E} = -\frac{\partial {\bf B}}{\partial t}. +\] +For electric field induced by changing magnetic field: use tricks of Ampère's +law in integral form: +\[ +\oint_{\cal P} {\bf B} \cdot d{\bf l} = \mu_0 I_{enc} +\hspace{3cm} +\oint_{\cal P} {\bf E} \cdot d{\bf l} = -\frac{d}{dt} \Phi +\] +

+ + + +
+

+{\bf Example 7.7:} +\({\bf B}(t)\) points up in circular region of radius \(R\). What is the induced \({\bf E}(t)\) ? +\paragraph{Solution:} +amperian loop of radius \(s\), apply Faraday: +\[ + \oint {\bf E} \cdot d{\bf l} = E (2\pi s) = -\frac{d\Phi}{dt} = -\pi s^2 \frac{dB}{dt} + \Rightarrow {\bf E} = -\frac{s}{2} \frac{dB}{dt} \hat{\boldsymbol \phi}. + \] +Increasing \({\bf B}\): clockwise (viewed from above) \({\bf E}\) from Lenz. +

+ +
+ + +
+

+{\bf Example 7.8:} wheel or radius \(b\) with line charge \(\lambda\) on the rim. +Uniform magnetic field \({\bf B}_0\) in central region up to \(a < b\), +pointing up. Field turned off. What happens ? +\paragraph{Solution:} the wheel starts spinning to compensate the reduction of field. +Faraday: +\[ + \oint {\bf E} \cdot d{\bf l} = -\frac{d\Phi}{dt} = - \pi a^2 \frac{dB}{dt} + \Rightarrow {\bf E} = -\frac{a^2}{2b} \frac{dB}{dt} \hat{\boldsymbol \phi}. + \] +Torque on segment \(d{\bf l}\): \(|{\bf r} \times {\bf F}| = b \lambda E dl\). +Total torque: +\[ + N = b\lambda \oint E dl = -b \lambda \pi a^2 \frac{dB}{dt} + \] +so total angular momentum imparted is +\[ + \int N dt = -\lambda \pi a^2 b \int_{B_0}^0 dB = \lambda \pi a^2 b B_0. + \] +

+ +
+ +

+The precise way the field is turned off doesn't matter. Only electric field does work. +

+ +

+{\bf N.B.:} we use magnetostatic formulas for changing fields. This is +called the {\bf quasistatic} approximation, and works provided we deal with +'slow enough' phenomena. +

+ +
+

+{\bf Example 7.9:} infinitely long straight wire carries \(I(t)\). Find +induced \({\bf E}\) field as a function of distance \(s\) from wire. +\paragraph{Solution:} quasistatic: magnetic field is \(B = \frac{\mu_0 I}{2\pi s}\) +and circles the wire. Like \({\bf B}\) field of solenoid, \({\bf E}\) runs parallel +to wire. Amperian loop with sides at distances \(s_0\) and \(s\): +\[ + \oint {\bf E} \cdot d{\bf l} = E(s_0)l - E(s)l = -\frac{d}{dt} \int {\bf B} \cdot d{\bf a} + = -\frac{\mu_0 l}{2\pi} \frac{dI}{dt} \int_{s_0}^s \frac{ds'}{s'} + = -\frac{\mu_0 l}{2\pi} \frac{dI}{dt} \ln(s/s_0). + \] +So: +\[ + {\bf E} (s) = \left[ \frac{\mu_0}{2\pi} \frac{dI}{dt} \ln s + K \right] \hat{\bf x} + \label{Gr(7.19)} + \] +where \(K\) is a constant (depends on the history of \(I(t)\)). +

+ +

+{\bf N.B.:} this can't be true always, since it blows up as \(s \rightarrow \infty\). +Reason: in this case, we've overstepped the quasistatic limit. We need +\(s \ll c\tau\) where \(\tau\) is a typical time scale for change of \(I(t)\). +

+ +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_Me.html b/build/emd_Me.html new file mode 100644 index 0000000..710159f --- /dev/null +++ b/build/emd_Me.html @@ -0,0 +1,1897 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Maxwell's Equations + + +emd.Me

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_Me_Me.html b/build/emd_Me_Me.html new file mode 100644 index 0000000..5893348 --- /dev/null +++ b/build/emd_Me_Me.html @@ -0,0 +1,1943 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Maxwell's Equations + + +emd.Me.Me

+
+

+Full set of equations for the electromagnetic field: +

+
+

+{\bf Maxwell's equations} {\it (in vacuum)} +

+\begin{align} + (i) {\boldsymbol \nabla} \cdot {\bf E} &= \frac{\rho}{\varepsilon_0}, \hspace{1cm} &\mbox{Gauss}, \nonumber \\ + (ii) {\boldsymbol \nabla} \cdot {\bf B} &= 0, \hspace{1cm} &\mbox{anonymous} \nonumber \\ + (iii) {\boldsymbol \nabla} \times {\bf E} &= -\frac{\partial {\bf B}}{\partial t}, \hspace{1cm} &\mbox{Faraday}, \nonumber \\ + (iv) {\boldsymbol \nabla} \times {\bf B} &= \mu_0 {\bf J} + \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t}, \hspace{1cm} &\mbox{Ampère + Maxwell}. + \label{Gr(7.39)} +\end{align} + +
+

+Complement: +

+
+

+{\bf Force law} +\[ + {\bf F} = q ({\bf E} + {\bf v} \times {\bf B}). + \label{Gr(7.40)} + \] +

+ +
+

+These equations summarize the {\bf entire content of classical electrodynamics}. +

+ +

+\paragraph{Note:} even the continuity equation can be derived from Maxwell's equations: +take divergence of \((iv)\). +

+ + + +

+Better way of writing: all fields on left, all sources on right, +

+
+\begin{align} + (i) &{\boldsymbol \nabla} \cdot {\bf E} = \frac{\rho}{\varepsilon_0}, + &(iii) {\boldsymbol \nabla} \times {\bf E} + \frac{\partial {\bf B}}{\partial t} = 0, \\ + (ii) &{\boldsymbol \nabla} \cdot {\bf B} = 0, + &(iv) {\boldsymbol \nabla} \times {\bf B} - \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t} = \mu_0 {\bf J}, + \label{Gr(7.42)} +\end{align} + +
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_Me_dc.html b/build/emd_Me_dc.html new file mode 100644 index 0000000..218ffdb --- /dev/null +++ b/build/emd_Me_dc.html @@ -0,0 +1,1952 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Maxwell's Correction to Ampère's Law; the Displacement Current + + +emd.Me.dc

+
+

+The term which should be zero (but isn't) in (\ref{Gr(7.35)}) can be rewritten using +the continuity equation as +\[ +{\boldsymbol \nabla} \cdot {\bf J} = -\frac{\partial \rho}{\partial t} = - \frac{\partial}{\partial t} +(\varepsilon_0 {\boldsymbol \nabla} \cdot {\bf E}) = -{\boldsymbol \nabla} \cdot \left( +\varepsilon_0 \frac{\partial {\bf E}}{\partial t} \right). +\] +The extra term would thus be eliminated if we were to put +

+
+

+\[ + {\boldsymbol \nabla} \times {\bf B} = \mu_0 {\bf J} + \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t} + \label{Gr(7.36)} + \] +

+ +
+

+\paragraph{Note:} this changes nothing in magnetostatics. Aesthetic appeal: +\[ + \boxed{ + \mbox{A changing electric field induces a magnetic field.} + } +\] +Real confirmation of Maxwell's theory: 1888, Hertz's experiments on propagation of electromagnetic waves. +

+ + + +

+Maxwell baptized this term the +

+
+

+{\bf Displacement current} +\[ + {\bf J}_d \equiv \varepsilon_0 \frac{\partial {\bf E}}{\partial t}. + \label{Gr(7.37)} + \] +

+ +
+

+Resolves the charging capacitor plate problem: if plates close together, +field is +\[ +E = \frac{\sigma}{\varepsilon_0} = \frac{1}{\varepsilon_0} \frac{Q}{A} +\] +where \(A\) is the area. Between the plates, +\[ +\frac{\partial E}{\partial t} = \frac{1}{\varepsilon_0 A} \frac{dQ}{dt} = \frac{1}{\varepsilon_0 A} I. +\] +Checking (\ref{Gr(7.36)}), +\[ +\oint {\bf B} \cdot d{\bf l} = \mu_0 I_{\mbox{enc}} + \mu_0 \varepsilon_0 \int d{\bf a} \cdot \frac{\partial {\bf E}}{\partial t} +\label{Gr(7.38)} +\] +Flat surface: OK, \(E = 0\) and \(I_{\mbox{enc}} = I\). Balloon surface: \(I = 0\) but \(\int d{\bf a} \cdot (\partial {\bf E}/\partial t) = I/\varepsilon_0\). Answers are consistent. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_Me_ebM.html b/build/emd_Me_ebM.html new file mode 100644 index 0000000..cc199f3 --- /dev/null +++ b/build/emd_Me_ebM.html @@ -0,0 +1,1922 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Electrodynamics Before Maxwell + + +emd.Me.ebM

+
+

+We've encountered: +

+\begin{align} +(i) &{\boldsymbol \nabla} \cdot {\bf E} = \frac{\rho}{\varepsilon_0}, \hspace{1cm} &\mbox{Gauss}, \nonumber \\ +(ii) &{\boldsymbol \nabla} \cdot {\bf B} = 0, \hspace{1cm} &\mbox{anonymous} \nonumber \\ +(iii) &{\boldsymbol \nabla} \times {\bf E} = -\frac{\partial {\bf B}}{\partial t}, \hspace{1cm} &\mbox{Faraday}, \nonumber \\ +(iv) &{\boldsymbol \nabla} \times {\bf B} = \mu_0 {\bf J}, \hspace{1cm} &\mbox{Ampère}. +\end{align} +

+Fatal inconsistency: div of curl must always vanish. Check on \((iii)\): +\[ +{\boldsymbol \nabla} \cdot ({\boldsymbol \nabla} \times {\bf E}) += {\boldsymbol \nabla} \cdot \left( -\frac{\partial {\bf B}}{\partial t} \right) = -\frac{\partial}{\partial t} ({\boldsymbol \nabla} \cdot {\bf B}) = 0. +\] +But: try same with \((iv)\): +\[ +{\boldsymbol \nabla} \cdot ({\boldsymbol \nabla} \times {\bf B}) = \mu_0 {\boldsymbol \nabla} \cdot {\bf J} +\label{Gr(7.35)} +\] +LHS must be zero, but RHS is not zero for non-steady currents. Cannot be right ! +

+ +

+Other way of seeing that Ampère's law must fail for non-steady currents: suppose we're charging a capacitor. +In integral form, +\[ +\oint {\bf B} \cdot d{\bf l} = \mu_0 I_{\mbox{enc}}. +\] +But the surface can either cut the charging wire, or not (by going 'around' the capacitor plate). +So for non-steady currents, the 'current enclosed by a loop' is ill-defined. +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_Me_mc.html b/build/emd_Me_mc.html new file mode 100644 index 0000000..ee34e36 --- /dev/null +++ b/build/emd_Me_mc.html @@ -0,0 +1,1920 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Magnetic Charge + + +emd.Me.mc

+
+

+In free space, where \(\rho\) and \({\bf J}\) vanish: +

+\begin{align} +(i) &{\boldsymbol \nabla} \cdot {\bf E} = 0, +&(iii) {\boldsymbol \nabla} \times {\bf E} + \frac{\partial {\bf B}}{\partial t} = 0, \\ +(ii) &{\boldsymbol \nabla} \cdot {\bf B} = 0, +&(iv) {\boldsymbol \nabla} \times {\bf B} - \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t} = 0, +\end{align} +

+Symmetry: replace \({\bf E}\) by \({\bf B}\) and \({\bf B}\) by \(-\mu_0 \varepsilon_0{\bf E}\) in the first pair. +They turn into the second pair. This symmetry is spoiled by \(\rho\) and \({\bf J}\). What if we had +a truly symmetric situation, {\it i.e.} +

+\begin{align} +(i) &{\boldsymbol \nabla} \cdot {\bf E} = \frac{\rho_e}{\varepsilon_0}, +&(iii) {\boldsymbol \nabla} \times {\bf E} = -\mu_0 {\bf J}_m -\frac{\partial {\bf B}}{\partial t}, \\ +(ii) &{\boldsymbol \nabla} \cdot {\bf B} = \mu_0 \rho_m, +&(iv) {\boldsymbol \nabla} \times {\bf B} = \mu_0 {\bf J}_e + \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t}, +\label{Gr(7.43)} +\end{align} +

+where \(\rho_m\) would represent the density of magnetic charge and \({\bf J}_m\) would be the current +of magnetic charge. Both charges would be conserved: +\[ +{\boldsymbol \nabla} \cdot {\bf J}_m = -\frac{\partial \rho_m}{\partial t}, \hspace{1cm} +{\boldsymbol \nabla} \cdot {\bf J}_e = -\frac{\partial \rho_e}{\partial t}. +\label{Gr(7.44)} +\] +Maxwell's equations {\bf beg} for magnetic charges. But we've never found any! +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_ce.html b/build/emd_ce.html new file mode 100644 index 0000000..40d99b5 --- /dev/null +++ b/build/emd_ce.html @@ -0,0 +1,1919 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Charge and Energy Flows + + +emd.ce

+ +
+
+ +Prerequisites + +
    +
  • Electrodynamics
  • +
+
+ +
+ +Objectives + +
    +
  • Know how to obtain the continuity equation from Maxwell's equations
  • +
  • Know the Poynting vector and theorem
  • +
  • Be familiar with Maxwell's stress tensor
  • +
  • Understand momentum and angular momentum conservation in electrodynamics
  • +
+
+
+ + + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_ce_amom.html b/build/emd_ce_amom.html new file mode 100644 index 0000000..00a49e4 --- /dev/null +++ b/build/emd_ce_amom.html @@ -0,0 +1,1903 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Angular Momentum + + +emd.ce.amom

+
+

+The angular momentum of EM fields is directly given by +

+
+

+{\bf Angular momentum of EM fields} +\[ + {\boldsymbol l} = {\boldsymbol r} \times {\boldsymbol g} + = \varepsilon_0 {\boldsymbol r} \times + \left({\boldsymbol E} \times {\boldsymbol B}\right) + \] +

+ +
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_ce_ce.html b/build/emd_ce_ce.html new file mode 100644 index 0000000..ab04fb1 --- /dev/null +++ b/build/emd_ce_ce.html @@ -0,0 +1,1933 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

The Continuity Equation + + +emd.ce.ce

+
+

+Very important distinction: {\bf global} versus {\bf local} conservation of charge. +

+ +

+Charge in a volume {\cal V}: +\[ +Q_{\cal V} (t) = \int_{\cal V} d\tau \rho ({\bf r}, t) +\label{Gr(8.1)} +\] +Current \({\bf J}\) flowing out through boundary \({\cal S}\) of \({\cal V}\): conservation of charge means +\[ +\frac{dQ_{\cal V}}{dt} = -\oint_{\cal S} d{\bf a} \cdot {\bf J} +\label{Gr(8.2)} +\] +This means that +\[ +\int_{\cal V} d\tau \frac{\partial \rho}{\partial t} = -\int_{\cal V} d\tau {\boldsymbol \nabla} \cdot {\bf J} +\label{Gr(8.3)} +\] +Since this is true for any volume, we have (re)derived the +

+
+

+{\bf Continuity equation} +\[ + \frac{\partial \rho}{\partial t} + {\boldsymbol \nabla} \cdot {\bf J} = 0 + \label{Gr(8.4)} + \] +

+ +
+

+Therefore, conservation of charge is a direct consequence of Maxwell's equations. +

+ +

+One thing to note: we have viewed \(\rho\) and \({\boldsymbol J}\) as sources +(the ''right-hand side'') of Maxwell's equations. The continuity equation thus +imposes a functional constraint on these sources: not {\it any} \(\rho\) and +\({\boldsymbol J}\) will do the trick, only the ones what obey it. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_ce_mom.html b/build/emd_ce_mom.html new file mode 100644 index 0000000..28e1787 --- /dev/null +++ b/build/emd_ce_mom.html @@ -0,0 +1,1926 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Momentum + + +emd.ce.mom

+
+

+From Newton's second law, +\[ + {\boldsymbol F} = \frac{d {\boldsymbol p}_{\tiny \mbox{mech}}}{dt} +\] +we have +\[ +\frac{d {\boldsymbol p}_{\tiny \mbox{mech}}}{dt} = -\varepsilon_0 \mu_0 \frac{d}{dt} \int_{\cal V} {\boldsymbol S} d\tau + \oint_S {\boldsymbol T} \cdot d{\boldsymbol a} +\] +in which the first integral can be interpreted as the momentum stored in the EM fields, and the second is the momentum per unit time flowing in through the surface. +

+ +

+This is thus simply a conservation law for momentum, with +

+
+

+{\bf Momentum density in the EM fields} +\[ + {\boldsymbol g} = \varepsilon_0 \mu_0 {\boldsymbol S} = \varepsilon_0 {\boldsymbol E} \times {\boldsymbol B} + \] +

+ +
+

+In a region in which the mechanical momentum is not changing due to external influences, we then have the +

+
+

+{\bf Continuity equation for EM momentum} +\[ + \frac{\partial}{\partial t} {\boldsymbol g} - {\boldsymbol \nabla} \cdot {\boldsymbol T} = 0 + \] +

+ +
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_ce_mst.html b/build/emd_ce_mst.html new file mode 100644 index 0000000..99a4e23 --- /dev/null +++ b/build/emd_ce_mst.html @@ -0,0 +1,1991 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Maxwell's Stress Tensor + + +emd.ce.mst

+
+

+Total EM force on charges in volume \({\cal V}\): +\[ + {\boldsymbol F} = \int_{\cal V} \left( {\boldsymbol E} + {\boldsymbol v} \times {\boldsymbol B} \right) \rho ~d\tau = \int_{\cal V} \left( \rho {\boldsymbol E} + {\boldsymbol J} \times {\boldsymbol B} \right) d\tau +\] +Force per unit volume: +\[ + {\boldsymbol f} \equiv \rho {\boldsymbol E} + {\boldsymbol J} \times {\boldsymbol B}. +\] +Substitute for \(\rho\) and \({\boldsymbol J}\) using Maxwell (Gauss and Ampère-Maxwell): +\[ + {\boldsymbol f} = \varepsilon_0 ({\boldsymbol \nabla} \cdot {\boldsymbol E}) {\boldsymbol E} + \left( \frac{1}{\mu_0} {\boldsymbol \nabla} \times {\boldsymbol B} - \varepsilon_0 \frac{ \partial {\boldsymbol E}}{\partial t} \right) \times {\boldsymbol B}. +\] +

+ +

+On the other hand we have +\[ + \frac{\partial }{\partial t} \left( {\boldsymbol E} × {\boldsymbol B} \right) + = \frac{∂ {\boldsymbol E}}{∂ t} × {\boldsymbol B} +

+
    +
  • {\boldsymbol E} × \frac{∂ {\boldsymbol B}}{∂ t}.
  • +
+

+\] +Using Faraday to substitute for \(\frac{\partial {\boldsymbol B}}{\partial t}\), +\[ + \frac{ ∂ {\boldsymbol E}}{∂ t} × {\boldsymbol B} + = \frac{\partial }{\partial t} \left( {\boldsymbol E} × {\boldsymbol B}\right) +

+
    +
  • {\boldsymbol E} × \left({\boldsymbol ∇} × {\boldsymbol E} \right)
  • +
+

+\] +so +\[ + {\boldsymbol f} = \varepsilon_0 \left( \left( {\boldsymbol \nabla} \cdot {\boldsymbol E} \right) {\boldsymbol E} - {\boldsymbol E} \times \left( {\boldsymbol \nabla} \times {\boldsymbol E} \right) \right) - \frac{1}{\mu_0} \left( {\boldsymbol B} \times \left( {\boldsymbol \nabla} \times {\boldsymbol B} \right) \right) - \varepsilon_0 \frac{\partial}{\partial t} \left( {\boldsymbol E} \times {\boldsymbol B} \right). +\] +Since \({\boldsymbol \nabla} \cdot {\boldsymbol B} = 0\), we can symmetrize the expression in \({\boldsymbol E}\) and \({\boldsymbol B}\). Moreover, by product rule 4, +\[ + \frac{1}{2}{\boldsymbol \nabla} \left( E^2 \right) = \left( {\boldsymbol E} \cdot {\boldsymbol \nabla} \right) {\boldsymbol E} + {\boldsymbol E} \times \left( {\boldsymbol \nabla} \times {\boldsymbol E} \right) +\] +so +\[ + {\boldsymbol E} \times \left( {\boldsymbol \nabla} \times {\boldsymbol E} \right) = \frac{1}{2} {\boldsymbol \nabla} E^2 - \left({\boldsymbol E} \cdot {\boldsymbol \nabla} \right) {\boldsymbol E} +\] +and similarly for \({\boldsymbol B}\). We thus get +

+\begin{align} + {\boldsymbol f} =& \varepsilon_0 \left( \left( {\boldsymbol \nabla} \cdot {\boldsymbol E} \right) {\boldsymbol E} + \left( {\boldsymbol E} \cdot {\boldsymbol \nabla} \right) {\boldsymbol E} \right) + \frac{1}{\mu_0} \left( \left( {\boldsymbol \nabla} \cdot {\boldsymbol B} \right) {\boldsymbol B} + \left( {\boldsymbol B} \cdot {\boldsymbol \nabla} \right) {\boldsymbol B} \right) \\ + &- \frac{1}{2} {\boldsymbol \nabla} \left( \varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) - \varepsilon_0 \frac{\partial}{\partial t} \left( {\boldsymbol E} \times {\boldsymbol B} \right). +\end{align} +

+This expression can be greatly simplified by introducing the +

+
+

+{\bf Maxwell stress tensor} +\[ + Tij ≡ ε0 \left( Ei Ej - \frac{1}{2} δij E2\right) +

+
    +
  • \frac{1}{\mu_0} \left( Bi Bj - \frac{1}{2} δij B2 \right)
  • +
+

+\] +

+ +
+

+The element \(T_{ij}\) represents the force per unit area in the $i$th direction acting on a surface element oriented in the $j$th direction. Diagonal elements are pressures, off-diagonal elements are shears. +

+ + + +

+We then obtain +

+
+

+{\bf EM force per unit volume} +\[ + {\boldsymbol f} = {\boldsymbol \nabla} \cdot {\boldsymbol T} - \varepsilon_0 \mu_0 \frac{\partial {\boldsymbol S}}{\partial t} + \] +

+ +
+

+where \({\boldsymbol S}\) is the Poynting vector. Integrating, we obtain the +

+
+

+{\bf Total force on charges in volume} +\[ + {\boldsymbol F} = \oint_S {\boldsymbol T} \cdot d{\boldsymbol a} - \varepsilon_0 \mu_0 \frac{d}{dt} \int_{\cal V} {\boldsymbol S} d\tau. + \] +

+ +
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_ce_poy.html b/build/emd_ce_poy.html new file mode 100644 index 0000000..064a413 --- /dev/null +++ b/build/emd_ce_poy.html @@ -0,0 +1,2075 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Poynting's Theorem; the Poynting Vector + + +emd.ce.poy

+
+

+Earlier: work done to assemble a static charge distribution: +\[ +W_e = \frac{\varepsilon_0}{2} \int d\tau ~E^2 +\tag{\ref{eq:Energy_as_int_E2}} +\] +Work necessary to get currents going: +\[ +W_m = \frac{1}{2\mu_0} \int d\tau ~B^2 +\label{Gr(7.34)} +\] +Total energy should be sum of these two. Derivation from scratch. +

+ +

+Suppose that at time \(t\), we have fields \({\bf E}\) and \({\bf B}\) produced by some charge +and current distributions \(\rho\) and \({\bf J}\). In an interval \(dt\), how much work is +done by EM forces ? From Lorentz force law: +\[ +{\bf F} \cdot d{\bf l} = q({\bf E} + {\bf v} \times {\bf B}) \cdot {\bf v} dt = q ~{\bf E} \cdot {\bf v} dt +\] +Really, we're looking at a small volume element \(d\tau\) carrying charge \(\rho d\tau\), moving +at velocity \({\bf v}\) such that \({\bf J} = \rho {\bf v}\). Thus, +\[ +\frac{dW}{dt} = \int_{\cal V} d\tau ~ {\bf E} \cdot {\bf J} +\label{Gr(8.6)} +\] +The integrand is the work done per unit time, per unit volume, {\it i.e.} the power delivered per unit volume. +In terms of fields alone: use Ampère-Maxwell: +\[ +{\bf E} \cdot {\bf J} = \frac{1}{\mu_0} {\bf E} \cdot ({\boldsymbol \nabla} \times {\bf B}) - \varepsilon_0 {\bf E} \cdot \frac{\partial {\bf E}}{\partial t} +\] +Using product rule 6, +\[ +{\boldsymbol ∇} ⋅ ({\bf E} × {\bf B}) = {\bf B} ⋅ ({\boldsymbol ∇} × {\bf E}) +

+
    +
  • {\bf E} ⋅ ({\boldsymbol ∇} × {\bf B}),
  • +
+

+\] +Invoking Faraday \({\boldsymbol \nabla} \times {\bf E} = - \partial {\bf B}/\partial t\), +\[ +{\bf E} ⋅ ({\boldsymbol ∇} × {\bf B}) = - {\bf B} ⋅ \frac{∂ {\bf B}}{∂ t} +

+
    +
  • {\boldsymbol ∇} ⋅ ({\bf E} × {\bf B}).
  • +
+

+\] +But obviously, +\[ +{\bf B} \cdot \frac{\partial {\bf B}}{\partial t} = \frac{1}{2} \frac{\partial}{\partial t} B^2, \hspace{1cm} +{\bf E} \cdot \frac{\partial {\bf E}}{\partial t} = \frac{1}{2} \frac{\partial}{\partial t} E^2 +\label{Gr(8.7)} +\] +so we get +\[ +{\bf E} ⋅ {\bf J} = -\frac{1}{2} \frac{\partial}{\partial t} \left( ε0 E2 + \frac{1}{\mu_0} B2 \right) +

+
    +
  • \frac{1}{\mu_0} {\boldsymbol ∇} ⋅ ({\bf E} × {\bf B}).
  • +
+

+\label{Gr(8.8)} +\] +Substituting this in \ref{Gr(8.6)} and using the divergence theorem, +we obtain +

+
+

+{\bf Poynting's theorem} +\[ + \frac{dW}{dt} = -\frac{d}{d t} ∫\cal V dτ \frac{1}{2} \left( ε0 E2 + \frac{1}{\mu_0} B2 \right) +

+
    +
  • \frac{1}{\mu_0} \oint\cal S d{\bf a} ⋅ ({\bf E} × {\bf B})
  • +
+

+ \label{Gr(8.9)} +\] +

+ +
+

+First term on RHS: total energy in EM fields. Second term: rate at which +energy is carried by EM fields out of \({\cal V}\) across its boundary surface. +

+ + + +

+Energy per unit time, per unit area carried by EM fields: +

+
+

+{\bf Poynting vector} +\[ + {\bf S} \equiv \frac{1}{\mu_0} ({\bf E} \times {\bf B}) + \label{Gr(8.10)} + \] +

+ +
+

+We can thus express Poynting's theorem more compactly: +

+
+

+{\bf Poynting's theorem} +\[ + \frac{dW}{dt} = - \frac{dU_{em}}{dt} - \oint_{\cal S} d{\bf a} \cdot {\bf S}. + \label{Gr(8.11)} + \] +

+ +
+

+where we have defined the total +

+
+

+{\bf Energy in electromagnetic fields} +\[ + U_{em} \equiv \frac{1}{2} \int d\tau \left( \varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) + \label{Gr(8.5)} + \] +

+ +
+

+We can rewrite the energies in terms of densities, +\[ +U_{em} = \int d\tau ~u_{em}, \hspace{1cm} +u_{em} \equiv \frac{1}{2} \left( \varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) +\label{Gr(8.13)} +\] +Then, +\[ +\frac{d}{dt} \int_{\cal V} d\tau ~u_{em} = -\oint_{\cal S} d{\bf a} \cdot {\bf S} = -\int_{\cal V} d\tau ~({\boldsymbol \nabla} \cdot {\bf S}) +\] +so we get the +

+
+

+{\bf Poynting theorem (differential form)} +\[ + \frac{\partial}{\partial t} u_{em} + {\boldsymbol \nabla} \cdot {\bf S} = 0 + \label{Gr(8.14)} + \] +

+ +
+

+and has a similar for to the continuity equation +(charge density goes into energy density, charge current goes into Poynting vector). +

+ + + +
+

+\paragraph{Example 8.1} Current in a wire: Joule heating. Energy per unit time delivered to wire: from Poynting. +Assuming that the field is uniform, the electric field parallel to the wire is +\[ + {\boldsymbol E} = \frac{V}{L} \hat{\boldsymbol x}, + \] +where \(V\) is the potential difference between the ends ald \(L\) is the length. Magnetic field is circumferential: +wire of radius \(a\), +\[ + {\boldsymbol B} = \frac{\mu_0 I}{2\pi a} \hat{\boldsymbol \phi} + \] +Poynting: +\[ + {\boldsymbol S} = \frac{1}{\mu_0} \frac{V}{L} \frac{\mu_0 I}{2\pi a} \hat{\boldsymbol x} \times \hat{\boldsymbol \phi} = -\frac{VI}{2\pi a L} \hat{\boldsymbol s} + \] +and points radially inwards. Energy per unit time passing surface of wire: +\[ + \int d{\bf a} \cdot {\bf S} = S (2\pi a L) = -V I + \] +where the minus sign means energy is flowing {\it in} (the wire heats up), +and the value is as expected. +

+ +
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_emw.html b/build/emd_emw.html new file mode 100644 index 0000000..6eb3ad1 --- /dev/null +++ b/build/emd_emw.html @@ -0,0 +1,1923 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electromagnetic waves in vacuum + + +emd.emw

+ +
+
+ +Prerequisites + +
    +
  • Electrodynamics
  • +
  • Convervation Laws
  • +
+
+ +
+ +Objectives + +
    +
  • Understand how to obtain the wave equation from Maxwell's equations
  • +
  • Understand monochromatic plane waves in vacuum
  • +
  • Understand their energy and momentum
  • +
  • Understand EM waves in linear media
  • +
  • Understand reflection and transmission of EM waves at an interface
  • +
  • Know the laws of reflection and refraction
  • +
  • Know Fresnel's equations (parallel polarization)
  • +
  • Know Brewster's angle
  • +
  • Understand EM waves in conductors
  • +
  • Understand simple waveguides and coaxial cables
  • +
+
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_emw_ep.html b/build/emd_emw_ep.html new file mode 100644 index 0000000..a23e0f3 --- /dev/null +++ b/build/emd_emw_ep.html @@ -0,0 +1,1968 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Energy and Momentum + + +emd.emw.ep

+
+

+Energy density in EM field: +\[ +u = \frac{1}{2} \left( \varepsilon_0 E^2 + \frac{1}{\mu_0} B^2 \right) +\label{Gr(9.53)} +\] +For a monochromatic EM plane wave, +\[ +B^2 = \frac{1}{c^2} E^2 = \mu_0 \varepsilon_0 E^2 +\label{Gr(9.54)} +\] +so the electric and magnetic contributions to energy density are equal +and +\[ + u = \varepsilon_0 E^2 = \varepsilon_0 E_0^2 \cos({\boldsymbol k} \cdot {\boldsymbol r} - \omega t + \delta) +\] +

+ +

+Poynting vector: +\[ +{\bf S} = \frac{1}{\mu_0} {\bf E} \times {\bf B}, +\label{Gr(9.56)} +\] +so for a monochromatic EM plan wave, +\[ + {\bf S} = c \varepsilon_0 E_0^2 \cos^2 ({\boldsymbol k} \cdot {\boldsymbol r} - \omega t + \delta) ~\hat{\boldsymbol n} \times (\hat{\boldsymbol k} \times \hat{\boldsymbol n}) = +\label{Gr(9.57)} +\] +or more succinctly: +

+
+

+{\bf Poynting vector of a monochromatic EM wave} +\[ + {\boldsymbol S} = c u ~\hat{\boldsymbol k} + \] +

+ +
+

+This has a transparent physical interpretation: the energy density \(u\) flows with velocity \(c\) in direction of the wave. +

+ +

+Similary, we get the +

+
+

+{\bf Momentum density of a monochromatic EM wave} +\[ + {\boldsymbol g} = \frac{1}{c^2} {\boldsymbol S} = \frac{u}{c} ~\hat{\boldsymbol k} + \] +

+ +
+ +

+Time averages: integrating over a (integer number of) cycle(s), we have +\[ + \langle u \rangle = \frac{\varepsilon_0}{2} E_0^2, \hspace{5mm} + \langle {\boldsymbol S} \rangle = \frac{c \varepsilon_0}{2} E_0^2 ~\hat{\boldsymbol k}, \hspace{5mm} + \langle {\boldsymbol g} \rangle = \frac{\varepsilon_0}{2c} E_0^2 ~\hat{\boldsymbol k}. +\] +

+ +

+The average power per unit time per unit area transported by an EM wave is called the {\bf Intensity} +\[ + I \equiv \langle S \rangle = \frac{c\varepsilon_0}{2} E_0^2 +\] +

+ +

+The {\it radiation pressure} is the momentum transfer per unit area per unit of time +\[ + P = \frac{1}{A}\frac{\Delta p}{\Delta t} = \frac{\langle g \rangle A c \Delta t}{A \Delta t} = \frac{\varepsilon_0}{2} E_0^2 = \frac{I}{c}. +\] +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_emw_mpw.html b/build/emd_emw_mpw.html new file mode 100644 index 0000000..ddf5831 --- /dev/null +++ b/build/emd_emw_mpw.html @@ -0,0 +1,1946 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Monochromatic Plane Waves + + +emd.emw.mpw

+
+

+A {\it monochromatic} wave is one having a single frequency in its temporal dependence. Say that the propagation direction is \(\hat{\boldsymbol z}\): we'd then have +\[ + {\bf E} (z, t) = {\bf E}_0 e^{i(k z - \omega t)}, \hspace{1cm} + {\bf B} (z,t) = {\bf B}_0 e^{i(k z - \omega t)} +\] +Maxwell's equations impose constraints. Since \({\boldsymbol \nabla} \cdot {\bf E} = 0\) and \({\boldsymbol \nabla} \cdot {\bf B} = 0\), +\[ +(E_0)_z = 0 = (B_0)_z +\label{Gr(9.44)} +\] +so {\bf electromagnetic waves are transverse}. +

+ +

+From Faraday: \({\boldsymbol \nabla} \times {\bf E} = -\partial {\bf B}/\partial t\), we then get +\[ +-k(E_0)_y = \omega (B_0)_x, \hspace{1cm} k (E_0)_x = \omega (B_0)_y \Longrightarrow +{\bf B}_0 = \frac{k}{\omega} ~\hat{\bf z} \times {\bf E}_0 +\label{Gr(9.46)} +\] +so \({\bf E}\) and \({\bf B}\) are mutually perpendicular, and +\[ +B_0 = \frac{k}{\omega} E_0 = \frac{1}{c} E_0. +\label{Gr(9.47)} +\] +

+ +

+Generalizing to propagation in the direction of an arbitrary wavevector +\({\boldsymbol k}\) and (transverse) polarization vector \(\hat{\boldsymbol n}\), we have the +

+
+

+{\bf E and B fields for a monochromatic EM plane wave} +\[ + {\boldsymbol E} ({\boldsymbol r},t ) = E_0 e^{i ({\boldsymbol k} \cdot {\boldsymbol r} - \omega t)} ~\hat{\boldsymbol n}, + \hspace{10mm} + {\boldsymbol B} ({\boldsymbol r}, t) = \frac{E_0}{c} e^{i({\boldsymbol k} \cdot {\boldsymbol r} - \omega t)} ~\hat{\boldsymbol k} \times \hat{\boldsymbol n} + = \frac{1}{c} ~\hat{\boldsymbol k} \times {\boldsymbol E} ({\boldsymbol r}, t) + \] +with the transversality condition +\[ + \hat{\boldsymbol k} \cdot \hat{\boldsymbol n} = 0 + \] +

+ +
+

+or if you prefer explicit real parts (adding a possible phase shift \(\delta\)): +\[ + {\boldsymbol E} ({\boldsymbol r},t ) = E_0 \cos({\boldsymbol k} \cdot {\boldsymbol r} - \omega t + \delta) \hat{\boldsymbol n}, + \hspace{10mm} + {\boldsymbol B} ({\boldsymbol r}, t) = \frac{E_0}{c} \cos ({\boldsymbol k} \cdot {\boldsymbol r} - \omega t + \delta) ~\hat{\boldsymbol k} \times \hat{\boldsymbol n} +\] +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emd_emw_we.html b/build/emd_emw_we.html new file mode 100644 index 0000000..4b05f5a --- /dev/null +++ b/build/emd_emw_we.html @@ -0,0 +1,1955 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

The Wave Equation + + +emd.emw.we

+
+

+\subsubsection*{The wave equation for \({\bf E}\) and \({\bf B}\)} +Take Maxwell's equations in vacuum: +

+\begin{align} +(i) &{\boldsymbol \nabla} \cdot {\bf E} = 0, +&(iii) {\boldsymbol \nabla} \times {\bf E} + \frac{\partial {\bf B}}{\partial t} = 0, \\ +(ii) &{\boldsymbol \nabla} \cdot {\bf B} = 0, +&(iv) {\boldsymbol \nabla} \times {\bf B} - \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t} = 0, +\end{align} +

+These take the form of coupled first-order partial differential equations for \({\bf E}\) and \({\bf B}\). They can be decoupled: simply take the curl of \((iii)\) and \((iv)\): +

+\begin{align} +{\boldsymbol \nabla} \times ({\boldsymbol \nabla} \times {\bf E}) += {\boldsymbol \nabla} ({\boldsymbol \nabla} \cdot {\bf E}) - {\boldsymbol \nabla}^2 {\bf E} += {\boldsymbol \nabla} \times \left( -\frac{\partial {\bf B}}{\partial t} \right) += -\frac{\partial}{\partial t} ({\boldsymbol \nabla} \times {\bf B}) += -\mu_0 \varepsilon_0 \frac{\partial^2 {\bf E}}{\partial t^2}, \\ +{\boldsymbol \nabla} \times ({\boldsymbol \nabla} \times {\bf B}) += {\boldsymbol \nabla} ({\boldsymbol \nabla} \cdot {\bf B}) - {\boldsymbol \nabla}^2 {\bf B} += {\boldsymbol \nabla} \times \left(\mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t} \right) += \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t} += -\mu_0 \varepsilon_0 \frac{\partial^2 {\bf B}}{\partial t^2}. +\end{align} +

+Since \({\boldsymbol \nabla} \cdot {\bf E} = 0\) and \({\boldsymbol \nabla} \cdot {\bf B} = 0\), +we get the +

+
+

+{\bf Wave equations for electric and magnetic fields in vacuum} +\[ + {\boldsymbol \nabla}^2 {\bf E} = \mu_0 \varepsilon_0 \frac{\partial^2 {\bf E}}{\partial t^2}, + \hspace{1cm} + {\boldsymbol \nabla}^2 {\bf B} = \mu_0 \varepsilon_0 \frac{\partial^2 {\bf B}}{\partial t^2}. + \label{Gr(9.41)} + \] +

+ +
+

+The equations for the electric and magnetic fields are now decoupled, at the price of becoming second-order equations. +

+ +

+In vacuum, the cartesian components of the fields thus obey the three-dimensional +wave equation +\[ +{\boldsymbol \nabla}^2 f = \frac{1}{v^2} \frac{\partial^2 f}{\partial t^2}. +\] +Maxwell's equations therefore support solutions in terms of waves travelling at a speed +\[ +c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 299 792 458 ~m/s. +\] +That is, a form +\[ +{\bf E} ({\bf r},t) = {\bf E}_0 e^{i ({\bf k} \cdot {\bf r} - \omega t)}, \hspace{1cm} +{\bf B} ({\bf r},t) = {\bf B}_0 e^{i ({\bf k} \cdot {\bf r} - \omega t)}, +\] +solves (\ref{Gr(9.41)}) for \(\omega = c |{\bf k}|\). +Here and under, we use complex exponentials for convenience, remembering that +the actual electric and magnetic fields are given by the real part. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm.html b/build/emdm.html new file mode 100644 index 0000000..0ae4375 --- /dev/null +++ b/build/emdm.html @@ -0,0 +1,1895 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electromagnetodynamics in Matter + + +emdm

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_Me.html b/build/emdm_Me.html new file mode 100644 index 0000000..552a90a --- /dev/null +++ b/build/emdm_Me.html @@ -0,0 +1,1895 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Maxwell's Equations in Matter + + +emdm.Me

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_Me_Mem.html b/build/emdm_Me_Mem.html new file mode 100644 index 0000000..e476a41 --- /dev/null +++ b/build/emdm_Me_Mem.html @@ -0,0 +1,2091 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Maxwell's Equations in Matter + + +emdm.Me.Mem

+
+

+Maxwell's equations in vacuum: +

+\begin{align} +(i)~~ &{\boldsymbol \nabla} \cdot {\bf E} = \frac{\rho}{\varepsilon_0}, \hspace{1cm} &\mbox{Gauss}, \nonumber \\ +(ii)~~ &{\boldsymbol \nabla} \cdot {\bf B} = 0, \hspace{1cm} &\mbox{anonymous} \nonumber \\ +(iii)~~ &{\boldsymbol \nabla} \times {\bf E} = -\frac{\partial {\bf B}}{\partial t}, \hspace{1cm} &\mbox{Faraday}, \nonumber \\ +(iv)~~ &{\boldsymbol \nabla} \times {\bf B} = \mu_0 {\bf J} + \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t}, \hspace{1cm} &\mbox{Ampère + Maxwell}. +\label{Gr(7.39)} +\end{align} +

+are complete as they stand. In presence of matter: more convenient to write sources in terms of +free charges and currents. +

+ +

+From static case: electric polarization \({\bf P}\) produces bound charge density (\ref{Gr(4.12)}) +\[ +\rho_b = -{\boldsymbol \nabla} \cdot {\bf P} +\label{Gr(7.46)} +\] +and magnetization \({\bf M}\) produces bound current density (\ref{Gr(6.13)}) +\[ +{\bf J}_b = {\boldsymbol \nabla} \times {\bf M} +\label{Gr(7.47)} +\] +One new feature in nonstatic case: change in electric polarization involves flow of bound charge +(call it \({\bf J}_p\)) which must be included in total current. +Consider a small chunk of polarized material. +Polarization induces charge density \(\sigma_b = P\) at one end and \(-\sigma_b\) at other. If \(P\) +increases a bit, charge increases, giving net current +\[ +dI = \frac{\partial \sigma_b}{\partial t} da_{\perp} = \frac{\partial P}{\partial t} da_{\perp}. +\] +We therefore have the +

+
+

+{\bf Polarization current density} +\[ + {\bf J}_p = \frac{\partial {\bf P}}{\partial t} + \label{Gr(7.48)} + \] +

+ +
+

+otherwise simply called the {\bf polarization current}. +This has nothing to do with the bound current \({\bf J}_b\) +(the latter is associated to magnetization; +the polarization current is the result of linear motion of charge when +polarization changes). We can check consistency with the continuity equation +associated to the conservation of bound charges: +

+ +

+\[ +{\boldsymbol \nabla} \cdot {\bf J}_p = {\boldsymbol \nabla} \cdot \frac{\partial {\bf P}}{\partial t} += \frac{\partial}{\partial t} ({\boldsymbol \nabla} \cdot {\bf P}) = -\frac{\partial \rho_b}{\partial t} +~~\longrightarrow~~\frac{\partial \rho_b}{\partial t} + {\boldsymbol \nabla} \cdot {\bf J}_p = 0 +\] +so OK, continuity equation is satisfied. +\({\bf J}_p\) is essential to account for conservation of bound charge. +Changing magnetization does not lead to analogous accumulation of charge and current. +

+ + + +

+In view of this: total charge density can be separated into 2 parts, +{\it free} and {\it bound}: +

+
+

+\[ + \rho = \rho_f + \rho_b = \rho_f - {\boldsymbol \nabla} \cdot {\bf P} + \label{Gr(7.49)} + \] +

+ +
+

+and current can be separated into three parts, {\it free}, {\it bound} and +{\it polarization}: +

+
+

+\[ + {\bf J} = {\bf J}f + {\bf J}b + {\bf J}p = {\bf J}f + {\boldsymbol ∇} × {\bf M} +

+
    +
  • \frac{∂ {\bf P}}{∂ t}.
  • +
+

+ \label{Gr(7.50)} +\] +

+ +
+

+Gauss's law: can be rewritten +\[ +{\boldsymbol \nabla} \cdot {\bf E} = \frac{1}{\varepsilon_0} (\rho_f - {\boldsymbol \nabla} \cdot {\bf P}) +\hspace{5mm}\longrightarrow \hspace{5mm} +{\boldsymbol \nabla} \cdot {\bf D} = \rho_f +\label{Gr(7.51)} +\] +where (as in static case) +

+
+

+\[ + {\bf D} \equiv \varepsilon_0 {\bf E} + {\bf P} + \label{Gr(7.52)} + \] +

+ +
+

+Ampère's law including Maxwell's term: +\[ +{\boldsymbol ∇} × {\bf B} = μ0 \left( {\bf J}f + {\boldsymbol ∇} × {\bf M} +

+
    +
  • \frac{∂ {\bf P}}{∂ t} \right) + μ0 ε0 \frac{∂ {\bf E}}{∂ t},
  • +
+

+\] +or +\[ +{\boldsymbol \nabla} \times {\bf H} = {\bf J}_f + \frac{\partial {\bf D}}{\partial t} +\label{Gr(7.53)} +\] +where as before +

+
+

+\[ + {\bf H} \equiv \frac{1}{\mu_0} {\bf B} - {\bf M} + \label{Gr(7.54)} + \] +

+ +
+

+Faraday's law and \({\boldsymbol \nabla} \cdot {\bf B} = 0\) remain +unaffected by our separation into free and +bound parts, since they don't involve \(\rho\) or \({\bf J}\). +

+ +

+In terms of free charges and currents, we thus get +

+
+

+{\bf Maxwell's equations {\it (in matter)}} +

+\begin{align} + (i)~~ &{\boldsymbol \nabla} \cdot {\bf D} = \rho_f, \nonumber \\ + (ii)~~ &{\boldsymbol \nabla} \cdot {\bf B} = 0, \nonumber \\ + (iii)~~ &{\boldsymbol \nabla} \times {\bf E} = -\frac{\partial {\bf B}}{\partial t}, \nonumber \\ + (iv)~~ &{\boldsymbol \nabla} \times {\bf H} = {\bf J}_f + \frac{\partial {\bf D}}{\partial t}. + \label{Gr(7.55)} +\end{align} + +
+

+Last term: {\bf displacement current}, +\[ +{\bf J}_d = \frac{\partial {\bf D}}{\partial t} +\label{Gr(7.58)} +\] +

+ +

+Must be complemented by the {\bf constitutive relations} giving \({\bf D}\) and \({\bf H}\) +in terms of \({\bf E}\) and \({\bf B}\). +For the restricted case of linear media: +

+
+

+\[ + {\bf P} = \varepsilon_0 \chi_e {\bf E}, \hspace{1cm} + {\bf M} = \chi_m {\bf H} + \label{Gr(7.56)} + \] +so +\[ + {\bf D} = \varepsilon {\bf E}, \hspace{1cm} + {\bf H} = \frac{1}{\mu} {\bf B}, + \label{Gr(7.57)} + \] +where \(\varepsilon \equiv \varepsilon_0(1 + \chi_e)\) and \(\mu \equiv \mu_0 (1 + \chi_m)\). +

+ +
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_Me_bc.html b/build/emdm_Me_bc.html new file mode 100644 index 0000000..cc9bcf3 --- /dev/null +++ b/build/emdm_Me_bc.html @@ -0,0 +1,1964 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Boundary Conditions + + +emdm.Me.bc

+
+

+Discontinuities between different media, deduced from +

+
+

+{\bf Maxwell's equations {\it (in matter)}, integral form} +

+\begin{align} + (i)~~ &\oint_{\cal S} {\bf D} \cdot d{\bf a} = Q_{f_{enc}}, \nonumber \\ + (ii)~~ &\oint_{\cal S} {\bf B} \cdot d{\bf a} = 0 \nonumber \\ + (iii)~~ &\oint_{\cal P} {\bf E} \cdot d{\bf l} = -\frac{d}{dt} \int_{\cal S} {\bf B} \cdot d{\bf a}, \nonumber \\ + (iv)~~ &\oint_{\cal P} {\bf H} \cdot d{\bf l} = I_{f_{enc}} + \frac{d}{dt} \int_{\cal S} {\bf D} \cdot d{\bf a}. +\end{align} + +
+

+Applying \((i)\) to wafer-thin Gaussian pillbox straddling boundary between 2 materials: +\({\bf D}_1 \cdot {\bf a} - {\bf D}_2 \cdot {\bf a} = \sigma_f a\) so +\[ +\boxed{ +D^{\perp}_1 - D^{\perp}_2 = \sigma_f +} +\label{Gr(7.59)} +\] +Same reasoning applied to \((ii)\) gives +\[ +\boxed{ +B^{\perp}_1 - B^{\perp}_2 = 0 +} +\label{Gr(7.60)} +\] +For \((iii)\): Amperian loop straddling surface: \({\bf E}_1 \cdot {\bf l} - {\bf E}_2 \cdot {\bf l} = +-\frac{d}{dt} \int_{\cal S} {\bf B} \cdot d{\bf a}\). Limit of small loop: flux vanishes, therefore +\[ +\boxed{ +{\bf E}_1^{\parallel} - {\bf E}_2^{\parallel} = 0 +} +\label{Gr(7.61)} +\] +Similarly, \((iv)\) implies \({\bf H}_1 \cdot {\bf l} - {\bf H}_2 \cdot {\bf l} = I_{f_{enc}}\). +No volume current can contribute, but a surface current can. Can write +\(I_{f_{enc}} = {\bf K}_f \cdot (\hat{\bf n} \times {\bf l}) = ({\bf K}_f \times \hat{\bf n}) \cdot {\bf l}\) +and thus +\[ +\boxed{ +{\bf H}_1^{\parallel} - {\bf H}_2^{\parallel} = {\bf K}_f \times \hat{\bf n} +} +\label{Gr(7.62)} +\] +These are the general boundary conditions for electrodynamics. +

+ +

+In case of linear media: can be expressed in terms of \({\bf E}\) and \({\bf B}\) alone: +

+\begin{align} +(i)~~ &\varepsilon_1 E_1^{\perp} - \varepsilon_2 E_2^{\perp} = \sigma_f, \nonumber \\ +(ii)~~ &B_1^{\perp} - B_2^{\perp} = 0, \nonumber \\ +(iii)~~ &{\bf E}_1^{\parallel} - {\bf E}_2^{\parallel} = 0, \nonumber \\ +(iv)~~ &\frac{1}{\mu_1} {\bf B}_1^{\parallel} - \frac{1}{\mu_2} {\bf B}_2^{\parallel} = {\bf K}_f \times \hat{\bf n}. +\label{Gr(7.63)} +\end{align} +

+If there is no free charge and no free current at boundary: +

+\begin{align} +(i)~~ &\varepsilon_1 E_1^{\perp} - \varepsilon_2 E_2^{\perp} = 0, \nonumber \\ +(ii)~~ &B_1^{\perp} - B_2^{\perp} = 0, \nonumber \\ +(iii)~~ &{\bf E}_1^{\parallel} - {\bf E}_2^{\parallel} = 0, \nonumber \\ +(iv)~~ &\frac{1}{\mu_1} {\bf B}_1^{\parallel} - \frac{1}{\mu_2} {\bf B}_2^{\parallel} = 0. +\label{Gr(7.64)} +\end{align} +

+These are basis of theory of reflection and refraction. +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm.html b/build/emdm_emwm.html new file mode 100644 index 0000000..41d6b56 --- /dev/null +++ b/build/emdm_emwm.html @@ -0,0 +1,1898 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electromagnetic Waves in Matter + + +emdm.emwm

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_ad.html b/build/emdm_emwm_ad.html new file mode 100644 index 0000000..2fed6ce --- /dev/null +++ b/build/emdm_emwm_ad.html @@ -0,0 +1,1894 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Absorption and Dispersion + + +emdm.emwm.ad

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_ad_c.html b/build/emdm_emwm_ad_c.html new file mode 100644 index 0000000..a15fc1c --- /dev/null +++ b/build/emdm_emwm_ad_c.html @@ -0,0 +1,1990 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
EM Waves in Conductors + + +emdm.emwm.ad.c
+
+

+We now consider EM waves inside a bulk conductor and will consider nonvanishing free charge \(\rho_f\) and current \({\boldsymbol J}_f\) densities. By Ohm's law, we have +\[ + {\boldsymbol J}_f = \sigma {\boldsymbol E} +\] +which means that the Maxwell equations reduce to +

+\begin{align} + {\boldsymbol \nabla} \cdot {\boldsymbol E} &= \frac{\rho_f}{\varepsilon}, + \hspace{10mm} & + {\boldsymbol \nabla} \cdot {\boldsymbol B} &= 0, \nonumber\\ + {\boldsymbol \nabla} \times {\boldsymbol E} &= -\frac{\partial {\boldsymbol B}}{\partial t} & + {\boldsymbol \nabla} \times {\boldsymbol B} &= \mu \sigma {\boldsymbol E} + \mu \varepsilon \frac{\partial {\boldsymbol E}}{\partial t}. +\end{align} +

+Putting together the continuity equation for free charge +\[ + \frac{\partial \rho_f}{\partial t} + {\boldsymbol \nabla} \cdot {\boldsymbol J}_f = 0 +\] +with Ohm's law and Gauss's law yields +\[ + \frac{\partial \rho_f}{\partial t} = -\sigma ({\boldsymbol \nabla} \cdot {\boldsymbol E}) = -\frac{\sigma}{\varepsilon} \rho_f + \longrightarrow + \rho_f (t) = \rho_f (0) e^{-\frac{\sigma}{\varepsilon} t} +\] +so any initial free charge dissipates with characteristic time \(\tau \equiv \frac{\varepsilon}{\sigma}\). +

+ +

+After the free charge has dissipated, we have +

+\begin{align} + {\boldsymbol \nabla} \cdot {\boldsymbol E} &= 0, + \hspace{10mm} & + {\boldsymbol \nabla} \cdot {\boldsymbol B} &= 0, \nonumber\\ + {\boldsymbol \nabla} \times {\boldsymbol E} &= -\frac{\partial {\boldsymbol B}}{\partial t} & + {\boldsymbol \nabla} \times {\boldsymbol B} &= \mu \sigma {\boldsymbol E} + \mu \varepsilon \frac{\partial {\boldsymbol E}}{\partial t} +\end{align} +

+Applying ${\boldsymbol ∇} × $ to the curl equations gives the modified wave equations +\[ + {\boldsymbol \nabla}^2 {\boldsymbol E} = \mu \varepsilon \frac{\partial^2 {\boldsymbol E}}{\partial t^2} + \mu \sigma \frac{\partial {\boldsymbol E}}{\partial t}, \hspace{10mm} + {\boldsymbol \nabla}^2 {\boldsymbol B} = \mu \varepsilon \frac{\partial^2 {\boldsymbol B}}{\partial t^2} + \mu \sigma \frac{\partial {\boldsymbol B}}{\partial t} +\] +with plane-wave solutions +\[ + {\boldsymbol E} ({\boldsymbol r}, t) = {\boldsymbol E}_0 e^{i \tilde{\boldsymbol k} \cdot {\boldsymbol r} - \omega t} +\] +with +\[ + \tilde{k}^2 \equiv \tilde{\boldsymbol k} \cdot \tilde{\boldsymbol k} = \mu \varepsilon \omega^2 + i\mu \sigma \omega. +\] +We can thus write +\[ + \tilde{k} \equiv k + i\kappa, \hspace{5mm} + k = k_+, \hspace{3mm}\kappa = k_-, \hspace{5mm} + k_{\pm} \equiv \omega \sqrt{\frac{\mu\varepsilon}{2}} \left[\sqrt{1 + \left(\frac{\sigma}{\varepsilon \omega}\right)^2} \pm 1 \right]^{1/2}. +\] +The wave can thus be written (letting \(\hat{\boldsymbol k}\) represent the direction of propagation and using the notations \({\boldsymbol k} \equiv k \hat{\boldsymbol k}\) and \({\boldsymbol \kappa} \equiv \kappa \hat{\boldsymbol k}\)) +\[ + {\boldsymbol E} ({\boldsymbol r}, t) = {\boldsymbol E}_0 e^{-{\boldsymbol \kappa} \cdot {\boldsymbol r}} e^{i ({\boldsymbol k} \cdot {\boldsymbol r} - \omega t)} +\] +with a similar solution for \({\boldsymbol B}\). +The quantity \(d = \frac{1}{\kappa}\) is known as the {\bf skin depth}. +

+ +

+For simplicity, we will put the propagation direction along \(z\) +and the polarization along \(x\): +\[ + {\boldsymbol E} (z,t) = E_0 e^{-\kappa z} e^{i(kz - \omega t)} \hat{\boldsymbol x}. +\] +From Maxwell (iii) we get +\[ + {\boldsymbol B} (z,t) = \frac{\tilde{k}}{\omega} E_0 e^{-\kappa z} e^{i(kz - \omega t)} \hat{\boldsymbol y}. +\] +

+ +

+To simplify things further, we write the complex wavevector in polar form: +\[ + \tilde{k} = K e^{i\phi}, \hspace{5mm} + K = \sqrt{k^2 + \kappa^2} = \omega \sqrt{\mu\varepsilon \sqrt{1 + \left( \frac{\sigma}{\varepsilon \omega}\right)^2}}, + \hspace{5mm} + \phi = \mbox{atan}~\frac{\kappa}{k}. +\] +The electric and magnetic fields thus develop a relative phase: +if we write \(E_0 = E e^{i \delta_E}\) and \(B_0 = B e^{i\delta_B}\) then +\[ + \delta_B - \delta_E = \phi +\] +so the magnetic field lags behind the electric field. The real amplitudes are related by +\[ + \frac{B}{E} = \frac{K}{\omega} = \sqrt{\mu\varepsilon \sqrt{1 + \left( \frac{\sigma}{\varepsilon \omega}\right)^2}} +\] +so the final form of the fields is +\[ + {\boldsymbol E} (z,t) = E e^{-\kappa z} \cos (kz - \omega t + \delta_E) \hat{\boldsymbol x}, \hspace{5mm} + {\boldsymbol B} (z,t) = B e^{-\kappa z} \cos (kz - \omega t + \delta_E + \phi) \hat{\boldsymbol y}. +\] +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_plm.html b/build/emdm_emwm_plm.html new file mode 100644 index 0000000..66cb33f --- /dev/null +++ b/build/emdm_emwm_plm.html @@ -0,0 +1,1965 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Propagation in Linear Media + + +emdm.emwm.plm

+
+

+In matter regions without free charge and free current: Maxwell's equations are +

+\begin{align} +(i)~~ &{\boldsymbol \nabla} \cdot {\bf D} = 0, \nonumber \\ +(ii)~~ &{\boldsymbol \nabla} \cdot {\bf B} = 0, \nonumber \\ +(iii)~~ &{\boldsymbol \nabla} \times {\bf E} = -\frac{\partial {\bf B}}{\partial t}, \nonumber \\ +(iv)~~ &{\boldsymbol \nabla} \times {\bf H} = \frac{\partial {\bf D}}{\partial t}. +\label{Gr(9.65)} +\end{align} +

+For linear medium: +\[ +{\boldsymbol D} = \varepsilon {\boldsymbol E}, \hspace{1cm} +{\boldsymbol H} = \frac{1}{\mu} {\boldsymbol B}. +\label{Gr(9.66)} +\] +If the medium is homogeneous (no spatial dependence of \(\varepsilon\) or \(\mu\)), +

+\begin{align} +(i)~~ &{\boldsymbol \nabla} \cdot {\bf E} = 0, \nonumber \\ +(ii)~~ &{\boldsymbol \nabla} \cdot {\bf B} = 0, \nonumber \\ +(iii)~~ &{\boldsymbol \nabla} \times {\bf E} = -\frac{\partial {\bf B}}{\partial t}, \nonumber \\ +(iv)~~ &{\boldsymbol \nabla} \times {\bf B} = \mu \varepsilon \frac{\partial {\bf E}}{\partial t}. +\label{Gr(9.65)} +\end{align} +

+These are the same equations as in vacuum, except for the substitution of \(\mu_0 \varepsilon_0\) by \(\mu \varepsilon\). +

+ +

+Speed of propagation: +\[ +v = \frac{1}{\sqrt{\mu \varepsilon}} = \frac{c}{n} +\label{Gr(9.68)} +\] +where the index of refraction of the material is defined as +

+
+

+{\bf Index of refraction} +\[ + n \equiv \sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}} + \label{Gr(9.69)} + \] +

+ +
+

+Fact: for most materials, \(\mu\) is very close to \(\mu_0\), so +\[ +n \simeq \sqrt{\varepsilon_r} +\label{Gr(9.70)} +\] +with \(\varepsilon_r\) being the dielectric constant \ref{Gr(4.34)}. +

+ +

+Energy density: +\[ +u = \frac{1}{2} \left( \varepsilon E^2 + \frac{1}{\mu} B^2 \right) +\label{Gr(9.71)} +\] +Poynting vector: +\[ +{\boldsymbol S} = \frac{1}{\mu} {\boldsymbol E} \times {\boldsymbol B} +\label{Gr(9.72)} +\] +Wave intensity +\[ +I = \frac{1}{2} \varepsilon v E_0^2 +\label{Gr(9.73)} +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_refl.html b/build/emdm_emwm_refl.html new file mode 100644 index 0000000..594c6fc --- /dev/null +++ b/build/emdm_emwm_refl.html @@ -0,0 +1,1909 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Reflection and Transmission + + +emdm.emwm.refl

+ +
+

+Interesting question: what happens to an EM wave as it passes from one medium to another? +Incident wave: produces reflected and transmitted waves. +Detailed study: starts from boundary conditions \ref{Gr(7.64)}, +

+\begin{align} +(i)~~ &\varepsilon_1 E_1^{\perp} - \varepsilon_2 E_2^{\perp} = 0, \nonumber \\ +(ii)~~ &B_1^{\perp} - B_2^{\perp} = 0, \nonumber \\ +(iii)~~ &{\bf E}_1^{\parallel} - {\bf E}_2^{\parallel} = 0, \nonumber \\ +(iv)~~ &\frac{1}{\mu_1} {\bf B}_1^{\parallel} - \frac{1}{\mu_2} {\bf B}_2^{\parallel} = 0. +\label{eq:EMBdryCondAtMediumInterface} +\end{align} +
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_refl_Ba.html b/build/emdm_emwm_refl_Ba.html new file mode 100644 index 0000000..3dce0a5 --- /dev/null +++ b/build/emdm_emwm_refl_Ba.html @@ -0,0 +1,1889 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Brewster's Angle + + +emdm.emwm.refl.Ba
+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_refl_Fe.html b/build/emdm_emwm_refl_Fe.html new file mode 100644 index 0000000..3c07e27 --- /dev/null +++ b/build/emdm_emwm_refl_Fe.html @@ -0,0 +1,1890 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Fresnel's Equations + + +emdm.emwm.refl.Fe
+
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_refl_ni.html b/build/emdm_emwm_refl_ni.html new file mode 100644 index 0000000..16d082c --- /dev/null +++ b/build/emdm_emwm_refl_ni.html @@ -0,0 +1,1981 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Normal Incidence + + +emdm.emwm.refl.ni
+
+

+Boundary between two media: \(x-y\) plane. Plane wave of frequency \(\omega\) travelling in \(z\) direction and polarized +in \(x\) direction approaches surface: +\[ +{\boldsymbol E}_I (z,t) = E_{0_I} e^{i (k_1 z - \omega t)} \hat{\boldsymbol x}, \hspace{1cm} +{\boldsymbol B}_I (z,t) = \frac{1}{v_1} E_{0_I} e^{i (k_1 z - \omega t)} \hat{\boldsymbol y} +\label{Gr(9.75)} +\] +(in which we have used \(B_0 = \frac{1}{v} E_0\), \ref{Gr(9.47)}). +

+ +

+Reflected wave: +\[ +{\boldsymbol E}_R (z,t) = E_{0_R} e^{i (-k_1 z - \omega t)} \hat{\boldsymbol x}, \hspace{1cm} +{\boldsymbol B}_R (z,t) = \frac{-1}{v_1} E_{0_R} e^{i (-k_1 z - \omega t)} \hat{\boldsymbol y} +\label{Gr(9.76)} +\] +(minus sign is conventional here, but handy for inverting Poynting vector direction). +

+ +

+For the transmitted wave, we put +\[ +{\boldsymbol E}_T (z,t) = E_{0_T} e^{i (k_2 z - \omega t)} \hat{\boldsymbol x}, \hspace{1cm} +{\boldsymbol B}_T (z,t) = \frac{1}{v_2} E_{0_T} e^{i (k_2 z - \omega t)} \hat{\boldsymbol y}. +\label{Gr(9.75)} +\] +

+ +

+Our boundary is by choice of coordinate system at \(z = 0\). Our setup calls for solving the boundary conditions \ref{eq:EMBdryCondAtMediumInterface} with \({\boldsymbol E}_I + {\boldsymbol E}_R\) and \({\boldsymbol B}_I + {\boldsymbol B}_R\) on one side, and \({\boldsymbol E}_T\) and \({\boldsymbol B}_T\) on the other. +

+ +

+At normal incidence, there are no perpendicular components of the fields relative to the surface, so \ref{eq:EMBdryCondAtMediumInterface} (i) and (ii) are obeyed. (iii) means that +\[ +E_{0_I} + E_{0_R} = E_{0_T} +\label{Gr(9.78)} +\] +while (iv) means that +\[ +\frac{1}{\mu_1} \frac{1}{v_1} (E_{0_I} - E_{0_R}) = \frac{1}{\mu_2} \frac{1}{v_2} E_{0_T}, +\label{Gr(9.79)} +\] +which can be rewritten as +\[ +E_{0_I} - E_{0_R} = \beta E_{0_T}, \hspace{1cm} +\beta \equiv \frac{\mu_1 v_1}{\mu_2 v_2} = \frac{\mu_1 n_2}{\mu_2 n_1}. +\label{Gr(9.80)} +\] +

+ +

+Solving these coupled equations, we can write +outgoing amplitudes in terms of incident ones: +\[ +E_{0_R} = \frac{1 - \beta}{1 + \beta} E_{0_I}, \hspace{10mm} +E_{0_T} = \frac{2}{1 + \beta} E_{0_I}. +\label{Gr(9.82)} +\] +

+ +

+The intensity of reflected and transmitted waves is the power per unit area transported by the wave. In vacuum, this was +\[ +I \equiv \langle S \rangle = \frac{1}{2} c \varepsilon_0 E_0^2. +\label{Gr(9.63)} +\] +Here, this becomes +\[ +I = \frac{1}{2} v \varepsilon E_0^2. +\label{Gr(9.73)} +\] +The fraction of incident intensity in the reflected intensity is +\[ +R \equiv \frac{I_R}{I_I} = \frac{E^2_{0_R}}{E^2_{0_I}} = \left( \frac{1 - \beta}{1 + \beta} \right)^2 +\label{Gr(9.86)} +\] +while the transmitted intensity is +\[ +T \equiv \frac{I_T}{I_I} = \frac{v_2 \varepsilon_2}{v_1 \varepsilon_1} \frac{E^2_{0_T}}{E^2_{0_I}} += \sqrt{\frac{\mu_1 \varepsilon_2}{\mu_2 \varepsilon_1}} \frac{E^2_{0_T}}{E^2_{0_I}} = \frac{4 \beta}{(1 + \beta)^2}. +\label{Gr(9.86)} +\] +We thus have that the {\bf reflection} and {\bf transmission coefficients} satisfy +\[ +R + T = 1. +\label{Gr(9.88)} +\] +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_refl_oi.html b/build/emdm_emwm_refl_oi.html new file mode 100644 index 0000000..51c5337 --- /dev/null +++ b/build/emdm_emwm_refl_oi.html @@ -0,0 +1,2051 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Oblique Incidence + + +emdm.emwm.refl.oi
+
+

+We now consider an interface between two media. Media \(1\) (for \(z < 0\)) has light velocity \(v_1\) while \(2\) (for \(z > 0\)) has \(v_2\). +

+ +

+Incident wave: +\[ +{\boldsymbol E}_I ({\boldsymbol r},t) = {\boldsymbol E}_{0_I} e^{i ({\boldsymbol k}_I \cdot {\boldsymbol r} - \omega t)}, \hspace{1cm} +{\boldsymbol B}_I ({\boldsymbol r},t) = \frac{1}{v_1} \hat{\boldsymbol k}_I \times {\boldsymbol E}_{I} ({\boldsymbol r}, t). +\] +Reflected wave: +\[ +{\boldsymbol E}_R ({\boldsymbol r},t) = {\boldsymbol E}_{0_R} e^{i ({\boldsymbol k}_R \cdot {\boldsymbol r} - \omega t)}, \hspace{1cm} +{\boldsymbol B}_R ({\boldsymbol r},t) = \frac{1}{v_1} \hat{\boldsymbol k}_R \times {\boldsymbol E}_{R} ({\boldsymbol r}, t). +\] +Transmitted wave: +\[ +{\boldsymbol E}_T ({\boldsymbol r},t) = {\boldsymbol E}_{0_T} e^{i ({\boldsymbol k}_T \cdot {\boldsymbol r} - \omega t)}, \hspace{1cm} +{\boldsymbol B}_T ({\boldsymbol r},t) = \frac{1}{v_2} \hat{\boldsymbol k}_T \times {\boldsymbol E}_{T} ({\boldsymbol r}, t). +\] +All waves have the same frequency \(\omega\). Since \(\omega = k v\), the three wavevectors are related by +\[ + k_I v_1 = k_R v_1 = k_T v_2 ~~\longrightarrow~~ k_I = k_R = \frac{v_2}{v_1} k_T = \frac{n_1}{n_2} k_T + \label{eq:RTObliquek} +\] +

+ +

+These forms for incident, reflected and transmitted wave can be substituted in the boundary conditions (\ref{eq:EMBdryCondAtMediumInterface}). Since these must be valid for any \(x\) and \(y\) (on the interface at \(z=0\)), we must have that the \(x\) and \(y\) components of the wavevectors coincide for all the waves: +\[ + k_{I_x} = k_{R_x} = k_{T_x}, \hspace{10mm} + k_{I_y} = k_{R_y} = k_{T_y} +\] +

+ +

+From now on we will orient the axes so that \({\boldsymbol k}_I\) lies in the \(xz\) plane. This means that \({\boldsymbol k}_R\) and \({\boldsymbol k}_T\) also lie in that plane. This is the +

+
+

+{\bf First law of reflection:} +the incident, reflected and transmitted wave vectors form a plane (called the plane of incidence) which also includes the normal to the surface. +

+ +
+

+Specializing (\ref{eq:RTObliquek}) to our notations, we have +\[ + k_I \sin \theta_I = k_R \sin \theta_R = k_T \sin \theta_T +\] +with the incidence (\(\theta_I\)) and reflection (\(\theta_R\)) angles +and the angle of refraction (\(\theta_T\)) obey the following laws: +

+
+

+{\bf Law of reflection} +\[ + \theta_I = \theta_R + \] +{\bf Law of refraction (Snell's law)} +\[ + n_1 \sin \theta_I = n_2 \sin \theta_T + \] +

+ +
+ +

+This takes care of the spatially-dependent exponential factors in the boundary conditions. The coefficients must further obey +

+\begin{align} + \varepsilon_1 \left({\boldsymbol E}_{0_I} + {\boldsymbol E}_{0_R} \right)_z &= \varepsilon_2 \left({\boldsymbol E}_{0_T} \right)_z, + & \hspace{10mm} + \left({\boldsymbol B}_{0_I} +{\boldsymbol B}_{0_R} \right)_z &= \left({\boldsymbol B}_{0_T}\right)_z, \nonumber \\ + \left( {\boldsymbol E}_{0_I} + {\boldsymbol E}_{0_R} \right)_{x,y} &= \left({\boldsymbol E}_{0_T}\right)_{x,y}, + & \frac{1}{\mu_1} \left({\boldsymbol B}_{0_I} + {\boldsymbol B}_{0_R} \right)_{x,y} &= \frac{1}{\mu_2} \left({\boldsymbol B}_{0_T}\right)_{x,y}. + \label{eq:EMBdryCondAtMediumInterface:amp} +\end{align} + +

+Further treatment depends on the polarization of the incoming wave. +The two cases of polarization parallel and perpendicular to the plane of incidence must be treated separately. We thus divide our incident electric field as follows: +\[ + {\boldsymbol E}_{0_I} = {\boldsymbol E}_{0_I}^{\parallel} + {\boldsymbol E}_{0_I}^{\perp}. +\] +

+ +

+\paragraph{Polarization in plane of incidence:} +in this case the first equation of (\ref{eq:EMBdryCondAtMediumInterface:amp}) gives +\[ + \varepsilon_1 \left(-E_{0_I} \sin \theta_I + E_{0_R} \sin \theta_R \right) = -\varepsilon_2 E_{0_T} \sin \theta_T. +\] +The second equation is a trivial \(0=0\). The third is +\[ + E_{0_I} \cos \theta_I + E_{0_R} \cos \theta_R = E_{0_T} \cos \theta_T +\] +while the fourth gives +\[ + \frac{1}{\mu_1 v_1} \left( E_{0_I} - E_{0_R} \right) = \frac{1}{\mu_2 v_2} E_{0_T} +\] +Given the laws of reflection and refraction, the first and fourth equations are the same and reduce to +\[ + E_{0_I} - E_{0_R} = \beta E_{0_T}, +\] +while the third equation becomes +\[ + E_{0_I} + E_{0_R} = \alpha E_{0_T}, \hspace{10mm} \alpha \equiv \frac{\cos \theta_T}{\cos \theta_I} +\] +Writing everything in terms of the incident amplitude, we get +

+
+

+{\bf Fresnel's equations for reflection and transmission amplitudes (parallel case)} +\[ + E_{0_R} = \frac{\alpha - \beta}{\alpha + \beta} E_{0_I}, + \hspace{10mm} + E_{0_T} = \frac{2}{\alpha + \beta} E_{0_I} + \] +

+ +
+ +

+Amplitudes for transmitted and reflected wave: depend on angle of incidence: +\[ + \alpha = \frac{\sqrt{1 - \sin^2 \theta_T}}{\cos \theta_I} = \frac{\left[1 - \left(\frac{n_1}{n_2}\right)^2 \sin^2 \theta_I\right]^{1/2}}{\cos \theta_I} +\] +Behaviour: for \(\theta_I = 0\) we recover (\ref{Gr(9.82)}). +For grazing waves \(\theta_I \rightarrow \pi/2\) we have that \(\alpha \rightarrow \infty\) and the wave is totally reflected. The most interesting angle is the one at which \(\alpha = \beta\) and the reflected wave has zero amplitude. This is known as +

+
+

+{\bf Brewster's angle {\it (at which the reflected wave amplitude vanishes)}} + \[ + \theta_B = \arcsin \left[ \frac{1 - \beta^2}{(n_1/n_2)^2 - \beta^2} \right]^{1/2} + \] +

+ +
+ +

+Power per unit area striking the interface: \({\boldsymbol S} \cdot \hat {\boldsymbol n}\) and thus +\[ + I_I = \frac{\varepsilon_1 v_1}{2} E_{0_I}^2 \cos \theta_I, + \hspace{5mm} + I_R = \frac{\varepsilon_1 v_1}{2} E_{0_R}^2 \cos \theta_R, + \hspace{5mm} + I_T = \frac{\varepsilon_2 v_2}{2} E_{0_T}^2 \cos \theta_T. +\] +

+ +

+Reflection and transmission coefficients: +\[ + R \equiv \frac{I_R}{I_I} = \frac{E_{0_R}^2}{E_{0_I}^2} = \left( \frac{\alpha - \beta}{\alpha + \beta} \right)^2, \hspace{5mm} + T \equiv \frac{I_R}{I_I} = \frac{\varepsilon_2 v_2}{\varepsilon_1 v_1} \frac{E_{0_T}^2 \cos \theta_T}{E_{0_I}^2 \cos \theta_I} = \alpha \beta \left( \frac{2}{\alpha + \beta} \right)^2. +\] +Of course, we get \(R + T = 1\) as expected. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_refr.html b/build/emdm_emwm_refr.html new file mode 100644 index 0000000..9d22e48 --- /dev/null +++ b/build/emdm_emwm_refr.html @@ -0,0 +1,1890 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Refraction + + +emdm.emwm.refr

+
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_wg.html b/build/emdm_emwm_wg.html new file mode 100644 index 0000000..da54a01 --- /dev/null +++ b/build/emdm_emwm_wg.html @@ -0,0 +1,1896 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Waveguides + + +emdm.emwm.wg

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_wg_c.html b/build/emdm_emwm_wg_c.html new file mode 100644 index 0000000..9eb6465 --- /dev/null +++ b/build/emdm_emwm_wg_c.html @@ -0,0 +1,1916 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Coaxial Lines + + +emdm.emwm.wg.c
+
+

+We now consider a cylindrical geometry, formed by two concentric conducting cylinders. We let \(a\) (resp. \(b\)) represent the radius of the inner (resp. outer) cylinder. +

+ +

+In this case, we can find nontrivial solutions to Maxwell's equations for \(E_z = 0 = B_z\). Simple inspection gives \(k = \frac{\omega}{c}\) and +

+\begin{align} + c B_y &= E_x, &\hspace{10mm} + \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} &= 0, &\hspace{10mm} + \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} &= 0, \nonumber \\ + c B_x &= -E_y, & + \frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} &= 0, & + \frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} &= 0 +\end{align} +

+The derivative equations are precisely the electrostatic and magnetic equations for empty space with cylindrical symmetry. The solution is thus that of an infinite line charge and an infinite straight current: +\[ + {\boldsymbol E}_0 (s, \phi) = \frac{A}{s} \hat{\boldsymbol s}, \hspace{10mm} + {\boldsymbol B}_0 (s, \phi) = \frac{A}{cs} \hat{\boldsymbol \phi} +\] +where \(A\) is a constant amplitude. Substituting and taking the real part, +\[ + {\boldsymbol E} (s, \phi, z, t) = \frac{A}{s} \cos (kz - \omega t) \hat{\boldsymbol s}, \hspace{10mm} + {\boldsymbol B} (s, \phi, z, t) = \frac{A}{cs} \cos (kz - \omega t) \hat{\boldsymbol \phi}. +\] +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_wg_gw.html b/build/emdm_emwm_wg_gw.html new file mode 100644 index 0000000..991d7a8 --- /dev/null +++ b/build/emdm_emwm_wg_gw.html @@ -0,0 +1,1940 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Guided waves + + +emdm.emwm.wg.gw
+
+

+A waveguide is a hollow structure in which EM waves can propagate. For simplicity here, we will assume that the boundaries of the waveguide are perfect conductors. Since the electric and magnetic fields vanish inside the walls of the waveguide, the boundary conditions at the inner walls are +\[ + {\boldsymbol E}^{\parallel} = 0, \hspace{10mm} B^\perp = 0. +\] +Free charges and currents will circulate on the surfaces in order to satisfy these constraints. +

+ +

+We are interested in monochromatic waves propagating down the waveguide and will thus take the generic ansatz +\[ + {\boldsymbol E} (x, y, z, t) = {\boldsymbol E}_0 (x,y) e^{i(kz - \omega t)}, \hspace{10mm} + {\boldsymbol B} (x, y, z, t) = {\boldsymbol B}_0 (x,y) e^{i(kz - \omega t)}. +\] +These fields must obey Maxwell's equations. Unlike waves in vacuum, it will turn out that EM waves in waveguides are not purely transverse. We will thus start with a general ansatz for the fields: +\[ + {\boldsymbol E}_0 = \sum_i E_i \hat{\boldsymbol i}, \hspace{10mm} + {\boldsymbol B}_0 = \sum_i B_i \hat{\boldsymbol i}, \hspace{10mm} + i = x, y, z. +\] +Maxwell's equations (iii) and (iv) then give +

+\begin{align} + \frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} &= i\omega B_z, + &\hspace{10mm} + \frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} &= -i \frac{\omega}{c^2} E_z, \nonumber \\ + \frac{\partial E_z}{\partial y} - ik E_y &= i\omega B_x, + &\hspace{10mm} + \frac{\partial B_z}{\partial y} - ik B_y &= -i \frac{\omega}{c^2} E_x, \nonumber \\ + ik E_x - \frac{\partial E_z}{\partial x} &= i\omega B_y, + &\hspace{10mm} + ik B_x - \frac{\partial B_z}{\partial x} &= -i \frac{\omega}{c^2} E_y. +\end{align} +

+The transverse components can be isolated by simple algebra: +

+\begin{align} + E_x &= \frac{i}{(\omega/c)^2 - k^2} \left( k \frac{\partial E_z}{\partial x} + \omega \frac{\partial B_z}{\partial y} \right), \nonumber \\ + E_y &= \frac{i}{(\omega/c)^2 - k^2} \left( k \frac{\partial E_z}{\partial y} - \omega \frac{\partial B_z}{\partial x} \right), \nonumber \\ + B_x &= \frac{i}{(\omega/c)^2 - k^2} \left( k \frac{\partial B_z}{\partial x} - \frac{\omega}{c^2} \frac{\partial E_z}{\partial y} \right), \nonumber \\ + B_y &= \frac{i}{(\omega/c)^2 - k^2} \left( k \frac{\partial B_z}{\partial y} + \frac{\omega}{c^2} \frac{\partial E_z}{\partial x} \right). +\end{align} +

+Putting these back into Maxwell (i) and (ii) gives the decoupled equations +\[ + \left[ \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \left(\frac{\omega}{c}\right)^2 - k^2 \right] E_z = 0, +\] +with an identical equation for \(B_z\). If \(E_z = 0\) the waves are called {\bf TE} waves (for {\it transverse electric}), and if \(B_z = 0\) they are called {\bf TM} (for {\it transverse magnetic}) waves. If \(E_z = 0 = B_z\) they are called {\bf TEM waves}. The latter cannot occur in a hollow waveguide (simple proof: Gauss + Faraday). +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emdm_emwm_wg_r.html b/build/emdm_emwm_wg_r.html new file mode 100644 index 0000000..ca50786 --- /dev/null +++ b/build/emdm_emwm_wg_r.html @@ -0,0 +1,1949 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Rectangular Waveguides + + +emdm.emwm.wg.r
+
+

+Assume a waveguide with rectangular cross-section of width \(a\) along \(\hat{\boldsymbol x}\) and \(b\) along \(\hat{\boldsymbol y}\). Without loss of generality (and to follow common historical convention) we will assume \(a \geq b\). +

+ +

+In view of this geometry, we will use separation of variables in Cartesian coordinates. We thus put +\[ + B_z (x,y) = X(x) Y(y) +\] +so +\[ + Y \frac{d^2 X}{dx^2} + X \frac{d^2 Y}{dy^2} + \left[(\omega/c)^2 - k^2 \right] XY = 0. +\] +Invoking separation of variables, we obtain +\[ + \frac{d^2 X}{dx^2} = -k_x^2 X, \hspace{5mm} + \frac{d^2 Y}{dy^2} = -k_y^2 Y, \hspace{5mm} + k_x^2 + k_y^2 + k^2 = \frac{\omega^2}{c^2}. +\] +The general solution for \(X\) is +\[ + X(x) = A \sin (k_x x) + B \cos (k_x x) +\] +and to fit the boundary conditions we must have that \(B_x = 0\) so +\(\partial B_x/\partial x\) must vanish at \(x=0, a\), +so \(dX/dx\) must also vanish at \(x = 0, a\) and thus \(A = 0\) and +\[ + k_x = m \pi/a, \hspace{5mm} m = 0, 1, \cdots +\] +The same reasoning applies to \(Y\) so we get +\[ + B_z (x, y) = B_0 \cos \frac{m\pi x}{a} \cos \frac{n \pi y}{b} +\] +which is called the TE\(_{mn}\) mode. Its wavenumber is +\[ + k = \sqrt{\left(\frac{\omega}{c}\right)^2 - \pi^2 \left[\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2 \right]}. +\] +In view of this, if the frequency is low enough, namely +\[ + \omega < c\pi \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2} \equiv \omega_{mn} +\] +then the wavenumber is imaginary and the travelling wave is exponentially attenuated. This frequency is called the {\bf cutoff frequency} for this mode. +

+ +

+In terms of the cutoff frequency, we have wavevector +\[ + k = \frac{1}{c} \sqrt{\omega^2 - \omega_{mn}^2} +\] +and wave velocity +\[ + v = \frac{\omega}{k} = \frac{c}{\sqrt{1 - \left(\frac{\omega_{mn}}{\omega}\right)^2}} +\] +which is {\it greater} than \(c\). The energy of the wave however propagates at the {\bf group velocity} +\[ + v_g = \frac{d\omega}{dk} = c \sqrt{1 - \left(\frac{\omega_{mn}}{\omega}\right)^2}. +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emf.html b/build/emf.html new file mode 100644 index 0000000..6ba2660 --- /dev/null +++ b/build/emf.html @@ -0,0 +1,1917 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electromagnetic Fields + + +emf

+ +
+
+ +Prerequisites + +
    +
  • Electrodynamics
  • +
+
+ +
+ +Objectives + +
    +
  • Know how to write electric and magnetic fields in terms of scalar and vector potentials
  • +
  • Understand how to operate a gauge transformation
  • +
  • Know the Coulomb gauge and the Lorenz gauge
  • +
  • Know the d'Alembertian operator
  • +
  • Know how to write Maxwell's equations in the Lorenz gauge
  • +
+
+
+ + + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emf_g.html b/build/emf_g.html new file mode 100644 index 0000000..649e4b9 --- /dev/null +++ b/build/emf_g.html @@ -0,0 +1,1914 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Gauge Freedom and Choices + + +emf.g

+ +
+

+When rewriting our fields into potentials, we passed from six unknowns (the three components of the electric and magnetic fields) to four (the scalar potential, and the three components of the vector potential). +

+ +

+There is however a certain ambiguity left when representing fields in terms of potentials. Namely, it is easy to verify that new fields +\[ + V^\prime = V - \frac{\partial \lambda}{\partial t}, \hspace{10mm} + {\boldsymbol A}^\prime = {\boldsymbol A} + {\boldsymbol \nabla} \lambda +\] +give the same \({\boldsymbol E}\) and \({\boldsymbol B}\) fields as \(V, {\boldsymbol A}\) for any scalar function \(\lambda ({\boldsymbol r}, t)\). +

+ +

+This very interesting fact that electrodynamics is invariant under +the gauge choice is called gauge freedom. Going from one choice to another is done by +implementing a gauge transformation. +

+
+ + + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emf_g_Cg.html b/build/emf_g_Cg.html new file mode 100644 index 0000000..6051fed --- /dev/null +++ b/build/emf_g_Cg.html @@ -0,0 +1,1913 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Coulomb Gauge + + +emf.g.Cg

+
+

+The {\bf Coulomb Gauge} is specified by taking +\[ + {\boldsymbol \nabla} \cdot {\boldsymbol A} = 0 +\] +in which case (\ref{eq:LaplacianV}) becomes simply +\[ + {\boldsymbol \nabla}^2 V = -\frac{\rho}{\varepsilon_0} +\] +{\it i.e.} Poisson's equation, whose solution we already know: +\[ + V({\boldsymbol r}, t) = \frac{1}{4\pi \varepsilon_0} \int d\tau' \frac{\rho({\boldsymbol r}^\prime, t)}{|{\boldsymbol r} - {\boldsymbol r}^\prime|} +\] +Note that this is an equal-time relationship (it does not mean instantaneous action at a distance, since \(V\) by itself is not physically measurable). +

+ +

+Although Gauss's law looks nice in the Coulomb gauge, Amp{\`e}re-Maxwell does not: +\[ + {\boldsymbol \nabla}^2 {\boldsymbol A} - \mu_0 \varepsilon_0 \frac{\partial^2 {\boldsymbol A}}{\partial t^2} = -\mu_0 {\boldsymbol J} + \mu_0 \varepsilon_0 {\boldsymbol \nabla} \left( \frac{\partial V}{\partial t} \right). +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emf_g_Lg.html b/build/emf_g_Lg.html new file mode 100644 index 0000000..31e8939 --- /dev/null +++ b/build/emf_g_Lg.html @@ -0,0 +1,1949 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Lorenz Gauge; d'Alembertian; Inhomogeneous Maxwell Equations + + +emf.g.Lg

+
+

+A more aesthetic choice is the {\bf Lorenz gauge}: +\[ + {\boldsymbol \nabla} \cdot {\boldsymbol A} + \mu_0 \varepsilon_0 \frac{\partial V}{\partial t} = 0 + \label{eq:LorenzGauge} +\] +which is chosen to put the second term in the left-hand side of (\ref{eq:LaplacianA}) to zero. What remains is then +\[ + {\boldsymbol \nabla}^2 {\boldsymbol A} - \mu_0 \varepsilon_0 \frac{\partial^2 {\boldsymbol A}}{\partial t^2} = -\mu_0 {\boldsymbol J} +\] +while the equation for \(V\) becomes +\[ + {\boldsymbol \nabla}^2 V - \mu_0 \varepsilon_0 \frac{\partial^2 V}{\partial t^2} = -\frac{\rho}{\varepsilon_0}. +\] +These can be written compactly upon introducing a new operator: the +

+
+

+{\bf d'Alembertian operator} +\[ + \square^2 \equiv {\boldsymbol \nabla}^2 - \mu_0 \varepsilon_0 \frac{\partial^2}{\partial t^2} + \label{eq:dAlembertian} + \] +

+ +
+

+so we get the +

+
+

+{\bf Inhomogeneous Maxwell equations (Lorenz gauge)} +\[ + \square^2 V = -\frac{\rho}{\varepsilon_0}, \hspace{10mm} + \square^2 {\boldsymbol A} = -\mu_0 {\boldsymbol J} + \label{eq:InhomogeneousMaxwellLorenzGauge} + \] +

+ +
+

+This gauge is especially nice in the context of special relativity. +The whole of electrodynamics has thus reduced to solving the inhomogeneous +wave equations (\ref{eq:InhomogeneousMaxwellLorenzGauge}) +in terms of specified sources. +

+ + +

+Without choosing the Lorenz gauge, we can still write the inhomogeneous +Maxwell equations in a simpler form. Defining +\[ + L \equiv {\boldsymbol \nabla} \cdot {\boldsymbol A} + \mu_0 \varepsilon_0 \frac{\partial V}{\partial t}, +\] +we have by direct inspection +\[ + \square^2 V + \frac{\partial L}{\partial t} = -\frac{\rho}{\varepsilon_0}, \hspace{10mm} + \square^2 {\boldsymbol A} - {\boldsymbol \nabla} L = -\mu_0 {\boldsymbol J}. +\] +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emf_svp.html b/build/emf_svp.html new file mode 100644 index 0000000..17cddc4 --- /dev/null +++ b/build/emf_svp.html @@ -0,0 +1,1968 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Scalar and Vector Potentials + + +emf.svp

+
+\begin{align} +(i)~~ &{\boldsymbol \nabla} \cdot {\bf E} = \frac{\rho}{\varepsilon_0}, +&(iii)~~ {\boldsymbol \nabla} \times {\bf E} + \frac{\partial {\bf B}}{\partial t} &= 0, \nonumber \\ +(ii)~~ &{\boldsymbol \nabla} \cdot {\bf B} = 0, +&(iv)~~ {\boldsymbol \nabla} \times {\bf B} - \mu_0 \varepsilon_0 \frac{\partial {\bf E}}{\partial t} &= \mu_0 {\boldsymbol J}. +\end{align} +

+Solving these for generale time-dependent sources \(\rho({\boldsymbol r}, t)\) and \({\boldsymbol J} ({\boldsymbol r}, t)\) is not an easy task. +

+ +

+Useful strategy: represent fields in terms of potentials. +

+ +

+Easiest: +

+
+

+\[ + {\boldsymbol B} = {\boldsymbol \nabla} \times {\boldsymbol A} + \] +

+ +
+ +

+Putting this into Faraday's law gives +\[ + {\boldsymbol \nabla} \times \left({\boldsymbol E} + \frac{\partial {\boldsymbol A}}{\partial t} \right) = 0 +\] +so this can be written as the gradient of a scalar (by choice: \(-{\boldsymbol \nabla} V\)) so we get +

+
+

+\[ + {\boldsymbol E} = -{\boldsymbol \nabla} V - \frac{\partial {\boldsymbol A}}{\partial t} + \label{eq:E_from_Potentials} + \] +

+ +
+ +

+Using this potential representation for \({\boldsymbol E}\) and \({\boldsymbol B}\) automatically fulfills the two homogeneous Maxwell equations. For the inhomogeneous equations, substituting (\ref{eq:E_from_Potentials}) into Gauss's law gives +

+
+

+\[ + {\boldsymbol \nabla}^2 V + \frac{\partial}{\partial t} {\boldsymbol \nabla} \cdot {\boldsymbol A} = -\frac{\rho}{\varepsilon_0} + \label{eq:LaplacianV} + \] +

+ +
+

+whereas Amp{\`ere}-Maxwell becomes +\[ + {\boldsymbol \nabla} \times \left({\boldsymbol \nabla} {\boldsymbol A}\right) = \mu_0 {\boldsymbol J} - \mu_0 \varepsilon_0 {\boldsymbol \nabla} \left(\frac{\partial V}{\partial t}\right) - \mu_0 \varepsilon_0 \frac{\partial^2 {\boldsymbol A}}{\partial t^2} +\] +which becomes after simple rearrangement and use of the identity \({\boldsymbol \nabla} \times \left({\boldsymbol \nabla} \times {\boldsymbol A}\right) = {\boldsymbol \nabla} ({\boldsymbol \nabla} \cdot {\boldsymbol A}) - {\boldsymbol \nabla}^2 {\boldsymbol A}\), +

+
+

+\[ + \left( {\boldsymbol ∇}2 {\boldsymbol A} - μ0 ε0 \frac{∂2 {\boldsymbol A}}{∂ t2} \right) +

+
    +
  • {\boldsymbol ∇} \left({\boldsymbol ∇} ⋅ {\boldsymbol A} + μ0 ε0 \frac{\partial V}{\partial t} \right) = -μ0 {\boldsymbol J}
  • +
+

+ \label{eq:LaplacianA} +\] +

+ +
+
+
+ + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems.html b/build/ems.html new file mode 100644 index 0000000..0b57a44 --- /dev/null +++ b/build/ems.html @@ -0,0 +1,1897 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electromagnetostatics + + +ems

+ +
+
+ + + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca.html b/build/ems_ca.html new file mode 100644 index 0000000..596f7e3 --- /dev/null +++ b/build/ems_ca.html @@ -0,0 +1,1919 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Calculating or Approximating the Electrostatic Potential + + +ems.ca

+ +
+
+ +Prerequisites + +
    +
  • Electrostatics
  • +
+
+ +
+ +Objectives + +
    +
  • Understand the Laplace and Poisson equations
  • +
  • Understand the uniqueness theorem
  • +
  • Know the method of images and how to use it
  • +
  • Know the method of separation of variables and how to use it
  • +
  • Know the multipole expansion and how to use it
  • +
+
+
+ + + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_fe.html b/build/ems_ca_fe.html new file mode 100644 index 0000000..61b0751 --- /dev/null +++ b/build/ems_ca_fe.html @@ -0,0 +1,1954 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Fundamental Equations for the Electrostatic Potential + + +ems.ca.fe

+ +
+

+A generic configuration of static charges coupled via the Coulomb interaction +defines an electrostatic problem, whose solution is in principle obtained +from calculating either the field according to (\ref{eq:E_from_rho}), +

+
+

+\[ + {\bf E} ({\bf r}) = \frac{1}{4\pi\varepsilon_0} \int_{\mathbb{R}^3} d\tau' \rho({\bf r}') \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} + \tag{\ref{eq:E_from_rho}} + \] +

+ +
+

+or (often simpler) by calculating the electrostatic potential, using either the +explicit construction (\ref{eq:V_from_rho}) +

+
+

+\[ + V({\bf r}) = \frac{1}{4\pi \varepsilon_0} \int_{\mathbb{R}^3} d\tau' \frac{\rho({\bf r}')}{|{\bf r} - {\bf r}'|}. + \tag{\ref{eq:V_from_rho}} + \] +

+ +
+

+Alternately, we have also seen that the two fundamental equations for the +electrostatic field, Gauss's law (\ref{Gr(2.14)}) and the no-perpetual-machine (vanishing curl) +condition (\ref{Gr(2.20)}) can be expressed as the single +'local' (differential) condition (Poisson's equation) (\ref{eq:Poisson}) +

+ +
+

+\[ + {\boldsymbol \nabla}^2 V = -\frac{\rho}{\varepsilon_0}. + \tag{\ref{eq:Poisson}} + \] +

+ +
+ +

+In the specific case where the charge density vanishes, we fall back onto the simpler +Laplace equation +

+
+

+\[ + {\boldsymbol \nabla}^2 V = 0 + \tag{\ref{eq:Laplace}} + \] +

+ +
+
+ + + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_fe_L.html b/build/ems_ca_fe_L.html new file mode 100644 index 0000000..91fc955 --- /dev/null +++ b/build/ems_ca_fe_L.html @@ -0,0 +1,2053 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Laplace Equation + + +ems.ca.fe.L
+
+

+Of course, the simplest situation is to start by looking at the region of space +where there is no charge density. The potential then solves Laplace's equation. How can it possibly look ? +

+
+ + +
+
The Laplace Equation in One Dimension
+
+

+\[ +\frac{d^2 V(x)}{dx^2} = 0 \Longrightarrow V(x) = mx + b +\label{Gr(3.6)} +\] +Properties: +\paragraph{1.} \(V(x)\) is the average of \(V(x + a)\) and \(V(x - a)\) for any \(a\). +\paragraph{2.} Solutions to Laplace's equation have no local maxima or minima. +

+ +

+Boundary conditions: always work: two end values, one end value + same end derivative value. +Not always: one end value + derivative value at other end, two end derivative values. +

+
+
+ + +
+
The Laplace Equation in Two Dimensions
+
+

+\[ +\frac{d^2 V}{dx^2} + \frac{d^2 V}{dy^2} = 0. +\] +Properties: +\paragraph{1.} The value of \(V(x,y)\) equals the average value around the point: +\[ +V(x,y) = \frac{1}{2\pi R} \oint V dl +\] +\paragraph{2.} \(V\) has no local maxima or minima. All extrema occur at the boundaries. +

+
+
+ + +
+
The Laplace Equation in Three Dimensions
+
+

+\[ +{\boldsymbol \nabla}^2 V = 0 +\] +Properties: +\paragraph{1.} \(V({\bf r})\) is the average value of \(V\) over any spherical surface +centered at \({\bf r}\): +\[ +V({\bf r}) = \frac{1}{4\pi R^2} \oint V da +\] +\paragraph{2.} \(V\) can have no local maxima or minima. All extrema occur at the boundaries. +

+ +

+\paragraph{Another way of seeing this} is to write the second derivatives as +\[ +\frac{\partial^2 V({\bf r})}{\partial x^2} = f_x ({\bf r}), \hspace{5mm} +\frac{\partial^2 V({\bf r})}{\partial y^2} = f_y ({\bf r}), \hspace{5mm} +\frac{\partial^2 V({\bf r})}{\partial z^2} = f_z ({\bf r}), \hspace{5mm} +f_x + f_y + f_z = 0. +\] +The \(f_a ({\bf r})\) represent the three components of the curvature of \(V({\bf r})\). +An extremum of \(V\) at \({\bf r}_e\) would be characterized by \({\boldsymbol \nabla} V |_{{\bf r}_e} \cdot \delta{\bf r} = 0\) +for any infinitesimal displacement \(\delta{\bf r}\) around the extremum point. For a local +minimum, the second derivative form should be greater than zero, \(\sum_{i,j} \frac{\partial^2 V}{\partial r_i \partial r_j} \delta r_i \delta r_j > 0\) +for any displacement vector. Choosing alternately displacements along the three axes, +the form becomes \(f_x (\delta x)^2\), \(f_y (\delta y)^2\) or \(f_z (\delta z)^2\). Since the squared displacements +are necessarily positive, we thus require \(f_x > 0\), \(f_y > 0\) and \(f_z > 0\). This is impossible in view +of the \(f_x + f_y + f_z = 0\) condition above. +

+ +
+

+Earnshaw's theorem
+Since solutions to Laplace's equation have no local minimum, +it is impossible to find a static distribution of charges which generates an electrostatic field +with a stable equilibrium position for a test charge. +

+ +
+ +

+Going back to Poisson's equation, we can make a few comments: +

+ +
    +
  • representation (\ref{eq:Poisson}) highlights the 'local' nature of the coupling between electrostatic fields and charges: fields are 'created' where the charges 'sit'. This is also seen by looking at the integrand of (\ref{eq:V_from_rho}). If electrostatics was nonlocal, a modified representation like (\ref{eq:V_from_rho}) would still exist, but not a local differential one like (\ref{eq:Poisson}).
  • + +
  • as written, representations (\ref{eq:E_from_rho}) and (\ref{eq:V_from_rho}) require the knowledge of the charge density distribution \(\rho({\bf r})\) throughout space to determine the potential at any given point.
  • + +
  • (\ref{eq:Poisson}), being purely local, might allow to determine the potential at a specified point, provided we know the charge density distribution around this specified point, and at some set of other reference points (to make the solution unique).
  • +
+ + +

+We therefore want to ask the question: under what conditions can an electrostatic problem be fully +defined by solving Poisson's equation ? We start by mentioning some cases, and interpreting them thereafter. +

+ +

+First case: the electrostatic potential is uniquely determined +if \(\rho({\bf r})\) is given throughout all space. In this case, Poisson's equation +is explicitly solved by (\ref{eq:V_from_rho}). Explicit check: +\[ +{\boldsymbol \nabla}^2 V ({\bf r}) = \frac{1}{4\pi \varepsilon_0} \int_{\mathbb{R}^3} d\tau' \rho({\bf r}') {\boldsymbol \nabla}^2 \frac{1}{|{\bf r} - {\bf r}'|} += \frac{1}{4\pi \varepsilon_0} \int_{\mathbb{R}^3} d\tau' (-4\pi) \delta ({\bf r} - {\bf r}') = -\frac{\rho ({\bf r})}{\varepsilon_0}. +\] +where we have used (\ref{Gr(1.102)}), and the fact that the delta function is always resolved since we +integrate over all space. Note: it is implicitly assumed that the integral in (\ref{eq:V_from_rho}) +converges, i.e. that the charge density \(\rho({\bf r})\) is sufficiently well-behaved (does not +become singular). +

+ +

+First case (corollary): the electrostatic potential is uniquely determined +in a certain volume \({\cal V}\) bounded by boundary \({\cal S}\), provided the charge density +\(\rho ({\bf x})\) is given everywhere within \({\cal V}\), vanishes outside of \({\cal V}\), +and the value of the surface charge density \(\sigma\) is given everywhere on the boundary \({\cal S}\). +Of course, \({\cal S}\) need not be a connected surface. +

+ +

+This is obvious: we know where all the charges are, so this is really the same as the first case. +

+ +

+Second case: the electrostatic potential is uniquely determined +in a certain volume \({\cal V}\) bounded by boundary \({\cal S}\), provided the charge density +\(\rho ({\bf x})\) is given everywhere within \({\cal V}\), and the value of \(V\) is given everywhere on the +boundary \({\cal S}\). Of course, \({\cal S}\) need not be a connected surface. +

+ +

+Here, the logic is quite simple: since the electrostatic potential is known on all the surface enclosing +the space \({\cal V}\), and since Poisson's equation is local, we need not consider anything outside of \({\cal V}\) +to obtain \(V\) within \({\cal V}\). +

+ +

+Given a solution \(V_1 ({\bf r})\), we can easily show that it is unique. Suppose there was another solution +\(V_2 ({\bf r})\). Look at the difference, \(U \equiv V_1 - V_2\). In the bulk, \(U\) obeys the Laplace +equation +\[ +{\boldsymbol \nabla}^2 U = {\boldsymbol \nabla}^2 V_1 - {\boldsymbol \nabla}^2 V_2 = -\frac{\rho}{\varepsilon_0} + \frac{\rho}{\varepsilon_0} = 0. +\] +Moreover, \(U ({\bf r}) = 0\) for \({\bf r} \in {\cal S}\). Since solutions to the Laplace equation take +their maximal and minimal value on the boundary, we must have \(U = 0\) \(\forall {\bf r} \in {\cal V}\) +(Griffiths' proof). +

+ +

+This all feels a bit amateurish and not very systematic. Can we be more precise and general? What kinds of boundary information do we really need to specify the solution uniquely ? +

+
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_fe_g.html b/build/ems_ca_fe_g.html new file mode 100644 index 0000000..a3fb3b1 --- /dev/null +++ b/build/ems_ca_fe_g.html @@ -0,0 +1,1941 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Green's Identities + + +ems.ca.fe.g
+
+
+

+George Green +

+ +

+[1793-1841] was a self-taught English mathematician whose academic life story +did not follow the normal path: he was a miller! Despite having no formal education, in 1828, +he published at his own expense what was to become a truly lasting +contribution to science: An Essay on the Application of Mathematical Analysis +to the Theories of Electricity and Magnetism, in which the results discussed here can +be found. He was later admitted, at the young age of +40, as an undergraduate student in Cambridge where he remained until his early demise at age 47. +

+ +
+

+We can provide a very precise statement about uniqueness of solutions to Poisson's (or Laplace's) +equation with some very basic considerations starting from the divergence theorem +\[ +\int_{\cal V} d\tau {\boldsymbol \nabla} \cdot {\bf F} = \oint_{\cal S} da ~{\bf F} \cdot {\bf n} +\] +Let \({\bf F} = \phi {\boldsymbol \nabla} \psi\), where \(\phi\) and \(\psi\) are scalar fields. We +can then write +\[ +{\boldsymbol \nabla} \cdot (\phi {\boldsymbol \nabla} \psi) = \phi {\boldsymbol \nabla}^2 \psi + {\boldsymbol \nabla} \phi \cdot {\boldsymbol \nabla} \psi +\] +and +\[ +\phi {\boldsymbol \nabla} \psi \cdot {\bf n} = \phi \frac{\partial \psi}{\partial n}. +\] +Substituting this in the divergence theorem gives {\bf Green's first identity} +\[ +\int_{\cal V} d\tau ~(\phi {\boldsymbol \nabla}^2 \psi + {\boldsymbol \nabla} \phi \cdot {\boldsymbol \nabla} \psi) = \oint_{\cal S} da ~\phi \frac{\partial \psi}{\partial n}. +\label{eq:GreensFirstIdentity} +\] +This first identity will prove crucial in the argument that follows. +As an aside for now, for completeness, if we do the same thing again but with \(\phi\) and \(\psi\) +interchanged, and subtract the result, we obtain another useful result known as +{\bf Green's second identity} or {\bf Green's theorem} +\[ +\int_{\cal V} d\tau (\phi {\boldsymbol \nabla}^2 \psi - \psi {\boldsymbol \nabla}^2 \phi) += \oint_{\cal S} da \left(\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right). +\label{eq:GreensTheorem} +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_fe_uP.html b/build/ems_ca_fe_uP.html new file mode 100644 index 0000000..16e2561 --- /dev/null +++ b/build/ems_ca_fe_uP.html @@ -0,0 +1,1987 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Uniqueness of Solution to Poisson's Equation + + +ems.ca.fe.uP
+
+

+Suppose now that we have two solutions to the Poisson equation, \(V_1 ({\bf r})\) and \(V_2 ({\bf r})\). +Defining \(U = V_1 - V_2\), we see that \(U\) manifestly obeys Laplace +within \({\cal V}\), \({\boldsymbol \nabla}^2 U = 0\). +We can now use Green's first identity (\ref{eq:GreensFirstIdentity}) to shed some light on the boundary +problem for the electrostatic potential. Namely, put \(\phi = \psi = U\). This yields +\[ +\int_{\cal V} d\tau \left( U {\boldsymbol \nabla}^2 U + {\boldsymbol \nabla} U \cdot {\boldsymbol \nabla} U \right) += \oint_{\cal S} da ~U \frac{\partial U}{\partial n}. +\] +The first term on the left-hand side vanishes since \(U\) satisfies Laplace. +The right-hand side can be made to vanish if \(U\) obeys either +

+\begin{align} + &U|_{\cal S} = 0 &\mbox{({\bf Dirichlet})} \label{eq:Dirichlet}\\ + \mbox{or}& & \nonumber \\ + &\frac{\partial U}{\partial n}|_{\cal S} = 0 &\mbox{({\bf Neumann})} \label{eq:Newmann} +\end{align} +

+boundary conditions on each individual boundary surface. In those cases, we are left with +\[ +\int_{\cal V} d\tau \left|{\boldsymbol \nabla} U \right|^2 = 0, \longrightarrow {\boldsymbol \nabla} U = 0. +\] +\(U\) is thus constant. For Dirichlet, \(U = 0\) throughout \({\cal V}\), and thus \(V_2 = V_1\) and the solution +is unique. For Neumann, the solution is unique apart from an unimportant constant. +

+ +

+We can thus finally state the +

+
+

+Uniqueness Theorem +

+ +

+The solution to Poisson's equation \({\boldsymbol \nabla}^2 V = -\frac{\rho}{\varepsilon_0}\) inside a volume \({\cal V}\) +bounded by a (in general disconnected) surface \({\cal S}\) is uniquely defined provided either Dirichlet \(V |_{{\cal S}_i}\) or Neumann +\(\frac{\partial V}{\partial n} |_{{\cal S}_i}\) boundary conditions are used on each individual surface. +

+ +
+

+Note that these types of boundary conditions can be mixed, i.e. Dirichlet on some surfaces, +Neumann on others). +

+ +

+Existence of solutions: this is another matter. +Intuitively, from our first case: +the solution always exists for Dirichlet boundary conditions. +

+ +

+Link to earlier cases: the 'second case' above, in which the potential is specified on the +boundaries, is the case of Dirichlet boundary conditions. +The 'first case corollary', where the normal derivative of the potential is given, is a subcase involving +Neumann boundary conditions (subcase, because we could imagine other charges living outside volume \({\cal V}\), +whereas our first case corollary involved only surface charges). +

+ +

+\paragraph{Note on Griffiths' presentation of uniqueness theorem(s):} +we have used Green's identity to provide a general statement on uniqueness. Griffiths +might mislead you into thinking that there are numerous cases and corollaries. +Here (in italics) is his (confused) way of thinking about it (see Comment/warning below): +

+ +

+\subsubsection*{\it Boundary Conditions and Uniqueness Theorem} +\paragraph{\it First uniqueness theorem:} {\it The solution to Laplace's equation in some volume +\({\cal V}\) is uniquely determined if \(V\) is specified on the boundary surface \({\cal S}\). +{\bf Corollary:} the potential in a volume \({\cal V}\) is uniquely determined if +a) the charge density throughout the region and b) the value of \(V\) on all boundaries +are specified.} +

+ +

+\subsubsection*{\it Conductors and the Second Uniqueness Theorem} +\paragraph{\it Second uniqueness theorem:} {\it In a volume \({\cal V}\) surrounded by conductors +and containing a specified charge density \(\rho\), the electric field is uniquely determined +if the total charge on each conductor is given.} +

+ +

+{\it Comments: this is the same uniqueness as before, in view of the fact that conductors are +equipotentials, and capacitance relates the charge to the potential. +} +

+ +
+

+{\bf Comment/warning: {\color{blue} uniqueness theorem on uniqueness theorems}}
+Do not be misled by Griffiths: there is a {\it unique} uniqueness theorem for the +solution of Poisson's equation, namely the one we have stated starting from Green's first identity. +

+ +
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_me.html b/build/ems_ca_me.html new file mode 100644 index 0000000..6c1d42f --- /dev/null +++ b/build/ems_ca_me.html @@ -0,0 +1,1898 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

The Multipole Expansion + + +ems.ca.me

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_me_Ed.html b/build/ems_ca_me_Ed.html new file mode 100644 index 0000000..3baba8c --- /dev/null +++ b/build/ems_ca_me_Ed.html @@ -0,0 +1,1917 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Electric Field of a Dipole + + +ems.ca.me.Ed
+
+

+Put \({\bf d}\) along \(\hat{\bf z}\). Then, (\ref{eq:electric_dipole}) becomes +\[ +V_{\mbox{\tiny di}}({\bf r}) = \frac{1}{4\pi \varepsilon_0} \frac{p \cos \theta}{r^2} +\label{Gr(3.102)} +\] +Taking the gradient, +\[ +E_r = -\frac{\partial V}{\partial r} = \frac{1}{4\pi \varepsilon_0} \frac{2p\cos \theta}{r^3}, \hspace{1cm} +E_\theta = -\frac{1}{r} \frac{\partial V}{\partial \theta} = \frac{1}{4\pi \varepsilon_0} \frac{p \sin \theta}{r^3}, \hspace{1cm} +E_\phi = -\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} = 0, +\] +we get +\[ +{\bf E}_{\mbox{\tiny di}} (r, \theta) = \frac{1}{4\pi \varepsilon_0} \frac{p}{r^3} (2\cos \theta \hat{\bf r} + \sin \theta \hat{\bf \theta}) +\label{Gr(3.103)} +\] +or in a better coordinate-free form +\[ + {\bf E}_{\mbox{\tiny di}} ({\bf r}) = \frac{1}{4\pi \varepsilon_0} \frac{1}{r^3} \left[3 ({\bf p} \cdot \hat{\bf r}) \hat{\bf r} - {\bf p}\right] + \label{eq:dipole_field} +\] +

+ +

+Dipole energy +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_me_Eq.html b/build/ems_ca_me_Eq.html new file mode 100644 index 0000000..eafcc4c --- /dev/null +++ b/build/ems_ca_me_Eq.html @@ -0,0 +1,1896 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Electric Field of a Quadrupole + + +ems.ca.me.Eq
+
+

+Axially symmetric quadrupole +

+ +

+Quadrupole energy +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_me_a.html b/build/ems_ca_me_a.html new file mode 100644 index 0000000..0ff65b5 --- /dev/null +++ b/build/ems_ca_me_a.html @@ -0,0 +1,1960 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Approximate Potential at Large Distance + + +ems.ca.me.a
+
+

+Let's consider the spatial function in the potential for a single point source charge: +\[ +\frac{1}{|{\bf r} - {\bf r}_s|} +\] +How does this look when we're at large distances \(|{\bf r}| \gg |{\bf r}_s|\) ? +We can formally expand this in powers of \(|{\bf r}_s|/|{\bf r}|\). For simplicity, let's start by +putting \({\bf r} = r \hat{\bf z}, r > 0\) and \({\bf r}_s = r_s \hat{\bf z}\), with \(|r_s| < r\). +Then, by Taylor expanding, we get +\[ +\frac{1}{|{\bf r} - {\bf r}_s|} = \frac{1}{r - r_s} = \frac{1}{r} \sum_{l=0}^{\infty} \left(\frac{r_s}{r}\right)^l. +\] +Formally, we could do this for any vector \({\bf r}_s\) such that \(|{\bf r}_s| < |{\bf r}|\) by +Taylor expanding with the \({\boldsymbol \nabla}\) operator, +\[ +\frac{1}{|{\bf r} - {\bf r}_s|} = \sum_{l=0}^{\infty} \frac{1}{l!} \left( - {\bf r}_s \cdot {\boldsymbol \nabla} \right)^l \frac{1}{r} += \frac{1}{r} - {\bf r}_s \cdot {\boldsymbol \nabla} \frac{1}{r} + \frac{1}{2} \left({\bf r}_s \cdot {\boldsymbol \nabla} \right)^2 \frac{1}{r} + ... +\] +However, it is more practical to exploit the fact that in the configuration above, +the problem has azimuthal symmetry (everything on the \(\hat{\bf z}\) axis), and therefore +the potential takes the form of the general solution of Laplace's equation (\ref{Gr(3.65)}) with \(\theta = 0\). +Reading the parameters, we get \(A_l = 0\), \(B_l = r_s^l\). Putting back a generic angle, +we thus get +\[ +\frac{1}{|{\bf r} - {\bf r}_s|} = \sum_{l=0}^{\infty} \frac{r_s^l}{r^{l+1}} P_l (\cos \theta), +\hspace{1cm} \cos \theta \equiv \hat{\bf r} \cdot \hat{\bf r}_s, \hspace{1cm} r_s < r. +\label{Gr(3.94)} +\] +We thus see that our beloved Legendre polynomials are quite handy beasts indeed. +Considering an arbitrary charge distribution over a volume \({\cal V}\), +we can expand the potential at a point \({\bf r}\) outside \({\cal V}\) according to +(here, we put the origin of our coordinate system closer to all points in \({\cal V}\) than to \({\bf r}\) +to ensure convergence) +\[ +V({\bf r}) = \frac{1}{4\pi \varepsilon_0} \sum_{l=0}^{\infty} \frac{1}{|{\bf r}|^{l+1}} +\int_{\cal V} d\tau_s |{\bf r}_s|^l P_l (\hat{\bf r} \cdot \hat{\bf r}_s) \rho({\bf r}_s), +\hspace{1cm} |{\bf r}| > |{\bf r}_s| ~\forall~ {\bf r}_s \in {\cal V}. +\label{Gr(3.95)} +\] +This is an exact expansion of our potential if we keep all terms. However, the power of +this comes from the fact that truncating the series gives a very good approximation to the +original potential, as long as we are sufficiently far away from the source charges. +

+ +

+\paragraph{%DO NOT DO IT LIKE THIS ! +Ex. 3.10:} an {\bf electric dipole} consists of two equal and opposite charges \(\pm q\) separated +by a distance \(d\). For definiteness: we put \(q\) at position \({\bf d}/2\) and \(-q\) at \(-{\bf d}/2\). +The potential is +\[ +V({\bf r}) = \frac{q}{4\pi \varepsilon_0} \left( \frac{1}{|{\bf r} - {\bf d}/2|} - \frac{1}{|{\bf r} + {\bf d}/2|} \right). +\] +From the law of cosines, \(|{\bf r} \pm {\bf d}/2|^2 = r^2 + (d/2)^2 \mp rd \cos \theta += r^2 \left( 1 \mp \frac{d}{r} \cos \theta + \frac{d^2}{4r^2}\right)\) where \(\theta\) is the angle +between \(\hat{\bf r}\) and \(\hat{\bf d}\). +

+ +

+For \(r \gg d\), we can expand, +\[ +\frac{1}{|{\bf r} \mp {\bf d}/2|} \simeq \frac{1}{r} \left( 1 \pm \frac{d}{r} \cos \theta \right)^{1/2} +\simeq \frac{1}{r} \left( 1 \pm \frac{d}{2r} \cos \theta \right). +\] +Putting things together, +\[ +V({\bf r}) \simeq \frac{1}{4\pi \varepsilon_0} \frac{q d \cos \theta}{r^2} +\label{Gr(3.90)} +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_me_h.html b/build/ems_ca_me_h.html new file mode 100644 index 0000000..e35bd93 --- /dev/null +++ b/build/ems_ca_me_h.html @@ -0,0 +1,1998 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Higher Moments + + +ems.ca.me.h
+
+

+The next terms in the expansion are obtained similarly: the {\bf quadrupole term} is +\[ +V_{\mbox{\tiny quad}} ({\bf r}) = \frac{1}{4\pi \varepsilon_0} \frac{1}{r^3} \int_{\cal V} d\tau_s r_s^2 P_2 (\hat{\bf r} \cdot \hat{\bf r}_s) \rho({\bf r}_s) += \sum_{a,b = x,y,z} \frac{r_a r_b}{r^5} \int_{\cal V} d\tau_s \frac{1}{2} (3 r_{s,a} r_{s,b} - r_s^2 \delta_{a,b}) \rho ({\bf r}_s) +\] +and can be rewritten as +

+
+

+\[ + V_{\mbox{\tiny quad}} ({\bf r}) = \frac{1}{4\pi \varepsilon_0} \frac{1}{2} \sum_{a,b} \frac{r_a r_b}{r^5} Q_{ab} + \] +

+ +
+

+in terms of the {\bf quadrupole moment} +

+
+

+\[ + Q_{ab} = \int_{\cal V} d\tau_s (3 r_{s,a} r_{s,b} - r_s^2 \delta_{a,b}) \rho ({\bf r}_s). + \] +

+ +
+

+This is a symmetric rank \(2\) tensor, \(Q_{ab} = Q_{ba}\). +Moreover, it is traceless, \(\sum_a Q_{aa} = 0\). It therefore has \(5\) independent components. +

+ + + +

+Our expansion for the potential thus looks like +

+
+

+\[ + V({\bf r}) = \frac{1}{4\pi \varepsilon_0} \left( \frac{Q}{r} + \sum_a \frac{r_a}{r^3} p_a + \frac{1}{2} \sum_{a,b} \frac{r_a r_b}{r^5} Q_{ab} + ... \right) + \] +

+ +
+ +

+This can be carried further if we feel like it, with the {\bf octopole}, {\bf hexadecapole}, {\bf triacontadipole}, {\bf hexecontatetrapole}, … terms (see info box). +

+ +

+\paragraph{Important property:} +the leading nonvanishing multipole moment is independent of the chosen location for +the origin of the coordinate system (see Jackson Prob. 4.4). +

+ +
+

+{\bf A consistent nomenclature for the multipole expansion?}\\\\ +You all know the terms {\bf monopole}, {\bf dipole} and {\bf quadrupole}, +and perhaps also the less frequently used {\bf octupole}, {\bf hexadecapole} [16], +{\bf triacontadipole} (or {\bf dotriacontapole}) [32] and {\bf tetrahexacontapole} +(or {\bf hexacontatetrapole}) [64]. +Physicists are clearly insufficiently educated in the humanities: +these terms sound very fancy and their choice seems to make sense, but it doesn't. +{\bf Mono-} is derived from the Greek +{\it monos} ('alone'); {\bf di-} is derived from the Greek {\it dis} ('twice'); +{\bf quadru-} is a fake Latin prefix ({\it quadri-} would be genuine) +meaning 'something to do with the number 4', and +{\bf octu-} is another (fake) Latin prefix (both Greek and Latin have {\it octo/okto} for 8, +but Greek makes compounds with {\it octo-} or {\it octa-}, never {\it octu-}). +

+ +

+A more consistent nomenclature would be to go either fully Greek {\it or} Latin, +yielding:
+

+ +

+\begin{tabular}{r|ll} + & Greek-inspired & Latin-inspired
+ \hline + 1 & monopole & unipole
+ 2 & dipole & duopole
+ 4 & tetrapole & quadrupole
+ 8 & octopole & octopole
+\end{tabular}
+

+ +

+Irrespective of whether you have a predilection for the Greek or Latin version, +you can go wild and ask how this could generalize. The way to do this is not +uniquely defined; here is a set of possibilities for +more terms than you might ever (hopefully) need:
+

+ +

+\begin{tabular}{r|ll} + 16 & hexadecapole & sexdecapole
+ 32 & triacontadipole & trigentiduopole
+ 64 & hexecontatetrapole & sexagintiquadrupole
+ 128 & hecatonikosioctopole & viginticentioctopole
+ 256 & diacosipentecontahexapole & ducentiquinquagintisexapole +\end{tabular}
+

+ +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_me_md.html b/build/ems_ca_me_md.html new file mode 100644 index 0000000..40c21c2 --- /dev/null +++ b/build/ems_ca_me_md.html @@ -0,0 +1,1939 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Monopole and Dipole Terms + + +ems.ca.me.md
+
+

+The series (\ref{Gr(3.95)}) is organized in increasing powers of inverse distance. +The leading term is called the {\bf monopole} term, and is +

+
+

+\[ + V_{\mbox{\tiny mono}} ({\bf r}) = \frac{1}{4\pi \varepsilon_0} \frac{Q}{r}, \hspace{1cm} + Q = \int_{\cal V} d\tau_s \rho({\bf r}_s). + \label{Gr(3.97)} + \] +

+ +
+

+For a point charge, the monopole term gives the exact potential. +

+ +

+The next term is the {\bf dipole} term: by using \(P_1 (x) = x\), we have +\[ +V_{\mbox{\tiny di}} ({\bf r}) = \frac{1}{4\pi \varepsilon_0} \frac{1}{r^2} \int_{\cal V} d\tau_s \hat{\bf r} \cdot {\bf r}_s \rho({\bf r}_s) +\] +This can be written +

+
+

+\[ + V_{\mbox{\tiny di}} ({\bf r}) = \frac{1}{4\pi \varepsilon_0} \frac{\hat{\bf r} \cdot {\bf p}}{r^2}, + \hspace{10mm}{\bf p} \equiv \int_{\cal V} d\tau_s ~{\bf r}_s ~\rho({\bf r}_s). + \label{eq:electric_dipole} + \] +

+ +
+

+in terms of the {\bf dipole moment} \({\bf p}\). +Note that the dipole moment is an internal property of the source charges, and that it +in general depends on the chosen point of origin (more on this later). +

+ +

+Since dipole moments are vectors, they are summed following vector addition rules. +

+ +

+{\bf Pure dipole:} two charges closer and closer together, but charges higher and higher such that \({\bf p}\) remains finite. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_mi.html b/build/ems_ca_mi.html new file mode 100644 index 0000000..0fea287 --- /dev/null +++ b/build/ems_ca_mi.html @@ -0,0 +1,1932 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

The Method of Images + + +ems.ca.mi

+ +
+

+The fact that conductors are equipotentials means that we can fomally solve +loads of electrostatic problems involving conductors of various shapes, by +looking at combinations of point charges. +

+ +

+Let's consider the simplest electrostatic problem above a single point charge: +a system of two point charges. For definiteness, we put a charge \(q\) at coordinate +\(d \hat{z}\), and a charge \(-q\) at \(-d \hat{z}\). By superposition, we have that +\[ +V(x,y,z) = \frac{1}{4\pi \varepsilon_0} \left[ \frac{q}{[x2 + y2 + (z-d)2]1/2} +

+ +

+\label{Gr(3.9)} +\] +Now it's obvious that \(V = 0\) when \(z = 0\). Therefore, in the region \(z > 0\), this problem +is completely equivalent to a second problem: a point charge \(q\) at \(d \hat{z}\), +{\it and a grounded conductor on the whole plane \(z = 0\)}. Yet another equivalent +problem in the region \(z < 0\) is that of a charge \(-q\) at \(-d \hat{z}\) with a grounded +conductor on the plane \(z = 0\). +

+ +

+We can go one step further. In the two point charges problem (dipole), we could put +a conductor on {\it any} of the equipotential lines, and still have an explicit solution +for the potential in terms of the potential from the original two point charges. +

+ +

+In the Image problem, we might want to know what the induced surface charge is. +

+
+ + + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_mi_fe.html b/build/ems_ca_mi_fe.html new file mode 100644 index 0000000..df2238a --- /dev/null +++ b/build/ems_ca_mi_fe.html @@ -0,0 +1,1909 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Force and Energy + + +ems.ca.mi.fe
+
+

+Force is the same as case of two point charges: +\[ +{\bf F} = -\frac{1}{4\pi \varepsilon_0} \frac{q^2}{(2d)^2} \hat{\bf z} +\label{Gr(3.12)} +\] +Energy is however not the same: for two point charges, +(\ref{Gr(2.42)}) gives +\[ +W = -\frac{1}{4\pi \varepsilon_0} \frac{q^2}{2d} +\label{Gr(3.13)} +\] +whereas for the single charge and conducting plane, +\[ +W = -\frac{1}{4\pi \varepsilon_0} \frac{q^2}{4d} +\label{Gr(3.14)} +\] +Half: \(E^2\) integrated over half the space in (\ref{eq:Energy_as_int_E2}). +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_mi_isc.html b/build/ems_ca_mi_isc.html new file mode 100644 index 0000000..51e1e09 --- /dev/null +++ b/build/ems_ca_mi_isc.html @@ -0,0 +1,1904 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Induced Surface Charges + + +ems.ca.mi.isc
+
+

+Use (\ref{Gr(2.49)}), where normal direction is now \(\hat{\bf z}\). +\[ +\sigma(x, y) = \frac{-qd}{2\pi (x^2 + y^2 + d^2)^{3/2}} +\label{Gr(3.10)} +\] +Total induced charge: \(Q = \int \sigma da\). +Use planar coordinates: \(\sigma(r) = \frac{-qd}{2\pi (r^2 + d^2)^{3/2}}\), so +\[ +Q = \int_0^{2\pi} d\phi \int_0^{\infty} dr r \frac{-qd}{2\pi (r^2 + d^2)^{3/2}} += \frac{qd}{\sqrt{r^2 + d^2}}|_0^{\infty} = -q +\label{Gr(3.11)} +\] +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_mi_o.html b/build/ems_ca_mi_o.html new file mode 100644 index 0000000..c354229 --- /dev/null +++ b/build/ems_ca_mi_o.html @@ -0,0 +1,1919 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Other Image Problems + + +ems.ca.mi.o
+
+

+We can also play around differently. Elaborating on the grounded conducting plane above: +if we just change \(d\), the problem stays of the same nature. Now if, however, we change +the value of the charge at \(z = -d\) from \(q\) to \(q'\): what do we get ? The potential is +\[ +V(x,y,z) = \frac{1}{4\pi \varepsilon_0} \left[ \frac{q}{[x2 + y2 + (z-d)2]1/2} +

+
    +
  • \frac{q'}{[x2 + y2 + (z+d)2]1/2} \right]
  • +
+

+\] +This vanishes when +

+\begin{align} +\left(\frac{q}{q'}\right)^2 \frac{ x^2 + y^2 + z^2 + d^2 + 2dz}{x^2 + y^2 + z^2 + d^2 - 2dz} = 1, +\rightarrow +x^2 + y^2 + z^2 + d^2 + 2d \frac{\left(\frac{q}{q'}\right)^2 + 1}{\left(\frac{q}{q'}\right)^2 - 1} z = 0 +\nonumber \\ +\rightarrow x^2 + y^2 + (z + d\alpha)^2 = d^2 (\alpha^2 - 1), \hspace{1cm} \alpha \equiv \frac{\left(\frac{q}{q'}\right)^2 + 1}{\left(\frac{q}{q'}\right)^2 - 1}. +\end{align} +

+This only makes sense if \(\alpha > 1\), {\it i.e.} \(q' < q\), otherwise the radius is not positive definite. +Therefore, the equipotential \(V = 0\) is a sphere of radius \(R = d\sqrt{\alpha^2 - 1}\) centered at \(z = -d\alpha\). +The problem is therefore equivalent to a grounded metal sphere of that radius centered at this position, +with a single point charge \(q\) at \(d\hat{z}\) ! +(Griffiths pulls that out of a hat, but you now see where it comes from). Correspondence with +Griffiths Ex 3.2: his \(a-b\) is my \(2d\), but his \(b\) is (3.16) \(R^2/a\), so we get \(a - R^2/a = 2d\), +whose solution is \(a = d[1 + \alpha]\). +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_sv.html b/build/ems_ca_sv.html new file mode 100644 index 0000000..287c05e --- /dev/null +++ b/build/ems_ca_sv.html @@ -0,0 +1,1901 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Separation of Variables + + +ems.ca.sv

+ +
+

+In many cases, we can't just guess the form of the potential. However, we can often use +some symmetry of the problem to greatly simplify the form of solution to Laplace's equation. +

+
+ + + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_sv_car.html b/build/ems_ca_sv_car.html new file mode 100644 index 0000000..61e3b15 --- /dev/null +++ b/build/ems_ca_sv_car.html @@ -0,0 +1,2029 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Cartesian Coordinates + + +ems.ca.sv.car
+
+
+

+{\bf Example: separation of variables (Cartesian coordinates)}
+Two infinite grounded metal plates parallel to the \(xz\) plane, one at \(y = 0\) and the +other at \(y = a\). End at \(x = 0\) closed off with infinite insulated strip maintained +at potential \(V_0 (y)\). Find potential inside the slot. +\paragraph{Solution:} indep of \(z\), so 2d problem. Solve +\[ +\frac{\partial^2 V}{\partial^2 x} + \frac{\partial^2 V}{\partial^2 y} = 0 +\label{Gr(3.20)} +\] +\[ +(i) V(x, y = 0) = 0, \hspace{5mm} (ii)V(x, y = a) = 0, \hspace{5mm} (iii) V(0, y) = V_0 (y), \hspace{5mm} (iv) V (x \rightarrow \infty) \rightarrow 0. +\label{Gr(3.21)} +\] +Look for solutions of form +\[ +V(x,y) = X(x) Y(y), \hspace{1cm} +\frac{1}{X} \frac{d^2 X}{dx^2} + \frac{1}{Y} \frac{d^2 Y}{dy^2} = 0 +\label{Gr(3.23)} +\] +Choose +\[ +\frac{d^2 X_n}{dx^2} = k_n^2 X_n, \hspace{1cm} \frac{d^2Y_n}{dy^2} = -k_n^2 Y_n +\label{Gr(3.26)} +\] +where \(k_n\) is some real number. We can linearly combine solutions of (\ref{Gr(3.26)}) +for different \(k_n\) and still get a solution to (\ref{Gr(3.23)}). +Let's look first of all at the solutions of (\ref{Gr(3.26)}) for a given \(k_n\). +Since this is a second-order linear differential equation, there are two linearly +independent solutions. Most general solution: +\[ +X_n(x) = Ae^{k_nx} + Be^{-k_nx}, \hspace{1cm} Y_n(y) = C \sin k_ny + D \cos k_ny +\label{Gr(3.27)} +\] +Fix constants: from \((iv)\), \(A = 0\). From \((i)\), D = 0. Left with +\[ +V(x,y) = C_n e^{-k_nx} \sin k_n y +\label{Gr(3.28)} +\] +Then, \((ii)\) requires +\[ +k_n = \frac{n\pi}{a}, \hspace{1cm} n = 1, 2, 3, ... +\label{Gr(3.29)} +\] +But we can use as solution any linear combination of the functions defined +by these momenta. Fix coefficients with Fourier series: +\[ +V(x,y) = \sum_{n=1}^{\infty} C_n e^{-n\pi x/a} \sin (n\pi x/a) +\label{Gr(3.30)} +\] +Needed: +\[ +\int_0^a dy \sin(n\pi y/a) \sin (n' \pi y/a) = \delta_{n n'} \frac{a}{2} +\label{Gr(3.33)} +\] +so +\[ +C_n = \frac{2}{a} \int_0^a dy V_0(y) \sin(n\pi y/a) +\label{Gr(3.34)} +\] +

+ +
+ +

+\paragraph{Specific example:} say that \(V_0(y) = V_0\), some constant. Then, +\[ +C_n = \frac{2V_0}{a} \int_0^a dy \sin(n\pi y/a) = \frac{2V_0}{n\pi} (1 - \cos n\pi) = \frac{4V_0}{n\pi} \delta_{n, odd} +\label{Gr(3.35)} +\] +

+ +

+Applicable provided {\bf completeness} and {\bf orthogonality}: +

+ +

+Completeness: +\[ +f(x) = \sum_{n=1}^{\infty} C_n f_n (y), \hspace{1cm} \forall f \in C^{\infty} +\label{Gr(3.38)} +\] +

+ +

+Orthogonality: +\[ +\int_0^a dx f_n (x) f_{n'} (x) = 0, \hspace{1cm} n \neq n' +\label{Gr(3.39)} +\] +

+ +

+The solution for the specific case \(V_0 (y) = V_0\) therefore is +\[ +V(x,y) = \frac{4V_0}{\pi}\sum_{n=1, 3, 5, ...}^{\infty} \frac{1}{n} e^{-n\pi x/a} \sin (n\pi x/a) +\] +

+ + +
+

+ {\bf Example: rectangular pipe}
+ Two infinitely long grounded plates at \(y = 0,a\) are connected at \(x = \pm b\) +to metal strips maintained at constant \(V = V_0\). Find the potential in the resulting rectangular pipe. +\paragraph{Solution:} indep of \(z\). Laplace: \(\partial^2 V/\partial x^2 + \partial^2 V/\partial y^2 = 0\), +boundary conditions +\[ +(i) V (y = 0) = 0, \hspace{5mm} (ii) V (y = a) = 0, \hspace{5mm} (iii) V(x = b) = 0, \hspace{5mm} (iv) V(x = -b) = 0. +\label{Gr(3.40)} +\] +Generic solution: as (\ref{Gr(3.27)}), +\[ +V(x,y) = (Ae^{kx} + Be^{-kx}) (C\sin ky + D\cos ky). +\] +By symmetry, \(V(x,y) = V(-x,y)\) so \(A = B\). Now \(e^{kx} + e^{-kx} = 2\cosh kx\). Generic solution becomes +(redefining \(C\) and \(D\)) +\[ +V(x,y) = \cosh kx (C\sin ky + D\cos ky). +\] +Boundary conditions \((i)\) and \((ii)\) require \(D = 0\), \(k = n\pi/a\) so +\[ +V(x,y) = C \cosh(n\pi x/a) \sin(n\pi y/a) +\label{Gr(3.41)} +\] +with \((iv)\) already satisfied if \((iii)\) is. Full solution is linear combination of complete set of functions, +\[ +V(x,y) = \sum_{n=1}^{\infty} C_n \cosh(n\pi x/a) \sin(n\pi y/a). +\] +Coefficients: chosen such that \((iii)\) is fulfilled, \(V(b,y) = V_0\). From (\ref{Gr(3.35)}): +\[ +V(x,y) = \frac{4V_0}{\pi} \sum_{n = 1, 3, 5, ...} \frac{1}{n} \frac{\cosh (n\pi x/a)}{\cosh(n\pi b/a)} \sin(n\pi y/a). +\label{Gr(3.42)} +\] +

+ +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_sv_cyl.html b/build/ems_ca_sv_cyl.html new file mode 100644 index 0000000..5a910ce --- /dev/null +++ b/build/ems_ca_sv_cyl.html @@ -0,0 +1,1890 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Cylindrical Coordinates + + +ems.ca.sv.cyl
+
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ca_sv_sph.html b/build/ems_ca_sv_sph.html new file mode 100644 index 0000000..e7828e0 --- /dev/null +++ b/build/ems_ca_sv_sph.html @@ -0,0 +1,2269 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Spherical Coordinates + + +ems.ca.sv.sph
+
+

+In spherical coordinates, the Laplace equation takes the following form: +

+
+

+ +

+ +\begin{equation} +\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r}\right) + + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial V}{\partial \theta}\right) + + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2} = 0 +\label{Gr(3.53)} +\end{equation} + +
+

+If you are dealing with a problem having azimuthal symmetry, +\(V\) is independent of \(\phi\) and the equation simplifies to: +

+ +\begin{equation} +\frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r}\right) ++ \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial V}{\partial \theta}\right) += 0. +\label{Gr(3.54)} +\end{equation} + +

+Look for solution in form +

+ +

+\[ +V(r, \theta) = R(r) \Theta (\theta). +\label{Gr(3.55)} +\] +

+ +

+Put in (\ref{Gr(3.54)}), divide by \(V\): +

+ +

+\[ +\frac{1}{R} \frac{d}{dr} \left( r^2 \frac{dR}{dr} \right) + \frac{1}{\Theta \sin \theta} \frac{d}{d\theta} +\left(\sin \theta \frac{d\Theta}{d\theta} \right) = 0. +\label{Gr(3.56)} +\] +

+ +

+Separation of variables logic: each term must be a constant, +

+ +

+\[ +\frac{1}{R} \frac{d}{dr} \left( r^2 \frac{dR}{dr} \right) = l(l+1), \hspace{1cm} +\frac{1}{\Theta \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) = -l(l+1) +\label{Gr(3.57)} +\] +

+ +

+so the problem, originally involving {\it partial} differentials, now is given by +{\it ordinary} differential equations. Radial equation: +

+ +

+\[ +\frac{d}{dr} \left( r^2 \frac{dR}{dr} \right) = l(l+1) R +\label{Gr(3.58)} +\] +

+ +

+Search for solution of form \(r^\alpha\): \(\frac{d}{dr} (r^2 \alpha r^{\alpha - 1}) = \alpha (\alpha + 1) r^{\alpha} = l(l+1) r^{\alpha}\) +so we get \(\alpha = l\) or \(-(l+1)\). (\ref{Gr(3.58)}) thus has the general solution +

+ +

+\[ +R(r) = A r^l + \frac{B}{r^{l+1}} +\label{Gr(3.59)} +\] +

+ +

+Angular equation: +

+ +

+\[ +\frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) = -l(l+1) \sin \theta \Theta +\label{Gr(3.60)} +\] +

+ +

+has solutions in terms of {\bf Legendre polynomials} of the variable \(\cos \theta\): +\[ +\Theta(\theta) = P_l (\cos \theta) +\label{Gr(3.61)} +\] +\(P_l(x)\): convenient formula is the {\bf Rodrigues formula}: +

+ +

+\[ +P_l(x) = \frac{1}{2^l l!} \left( \frac{d}{dx} \right)^l (x^2 - 1)^l +\label{Gr(3.62)} +\] +

+ +

+Actually, a more practical formula is Bonnet's recursion relation +

+ +

+\[ +(l + 1) P_{l+1} (x) = (2l + 1) x P_l (x) - l P_{l-1} (x) +\] +

+ +

+First few examples: +

+ +\begin{align} +P_0 (x) &= 1 \nonumber \\ +P_1 (x) &= x \nonumber \\ +P_2 (x) &= \frac{1}{2} (3x^2 - 1) \nonumber \\ +P_3 (x) &= \frac{1}{2} (5x^3 - 3x) \nonumber \\ +P_4 (x) &= \frac{1}{8} (35x^4 - 30x^2 + 3) \nonumber \\ +P_5 (x) &= \frac{1}{8} (63x^5 - 70x^3 + 15x). +\end{align} + +

+Prefactor: chosen such that +

+ +

+\[ +P_l(1) = 1 +\label{Gr(3.63)} +\] +

+ +

+Angular equation (\ref{Gr(3.60)}) is second order: should be 2 solutions ! +These other solutions blow up at \(\theta = 0\) and/or \(\theta = \pi\) (unacceptable on physical grounds). +Ex.: second solution for \(l = 0\) is +

+ +

+\[ +\Theta (\theta) = \ln \left( \tan \frac{\theta}{2} \right) +\label{Gr(3.64)} +\] +

+ +

+General solution to problem with azimuthal symmetry: +

+
+

+\[ + V(r,\theta) = \sum_{l=0}^{\infty} \left( A_l r^l + \frac{B_l}{r^{l+1}} \right) P_l (\cos \theta) + \label{Gr(3.65)} + \] +

+ +
+ + + +
+

+Example: separation of variables (spherical coordinates) +

+ +

+The potential \(V_0 (\theta)\) is specified on the surface of a hollow +sphere of radius \(R\). Find potential inside sphere. +\paragraph{Solution:} (this is a case of Dirichlet boundary conditions) +here, \(B_l = 0\) \(\forall l\) since potential cannot diverge at origin. Formal solution: +

+ +

+\[ +V(r,\theta) = \sum_{l=0}^\infty A_l r^l P_l (\cos \theta) +\label{Gr(3.66)} +\] +

+ +

+Boundary condition: +

+ +

+\[ +V(R,\theta) = \sum_{l=0}^\infty A_l R^l P_l (\cos \theta) = V_0 (\theta) +\label{Gr(3.67)} +\] +

+ +

+Use fact that Legendre polynomials are orthogonal functions: +

+ +

+\[ +\int_{-1}^1 dx P_l (x) P_{l'} (x) = \frac{2}{2l + 1} \delta_{l l'}, +\label{LegendreOrthogonality} +\] +

+ +

+or in other words +

+ +

+\[ +\int_0^\pi d\theta \sin \theta P_l (\cos \theta) P_{l'} (\cos \theta) = \frac{2}{2l + 1} \delta_{l l'} +\label{Gr(3.68)} +\] +

+ +

+We thus get +

+ +

+\[ +A_l = \frac{2l + 1}{2R^l} \int_0^\pi d\theta \sin \theta P_l (\cos \theta) V_0 (\theta). +\label{Gr(3.69)} +\] +

+ +
+ +

+Specific example: choose +

+ +

+\[ +V_0 (\theta) = k \sin^2 (\theta/2) +\label{Gr(3.70)} +\] +

+ +

+This is \(V_0 (\theta) = \frac{k}{2} (1 - \cos \theta) = \frac{k}{2} (P_0 (\cos \theta) - P_1 (\cos \theta))\). +

+ +

+Thus, \(A_0 = k/2\), \(A_1 = -k/2\), and all others are zero, so +

+ +

+\[ +V(r, \theta) = \frac{k}{2} (1 - \frac{r}{R} \cos \theta). +\label{Gr(3.71)} +\] +

+ + +
+

+Example: surface charge density on sphere +

+ +

+A surface charge density \(\sigma_0 (\theta)\) is glued over +the surface of a spherical shell of radius \(R\). Find \(V\) inside and outside sphere. +\paragraph{Solution:} (this is a case of Neumann boundary conditions) Could use direct integration. Try separation of variables. In interior: +

+ +

+\[ +V^ + +

+

+(other terms blow up as \(r \rightarrow 0\), so need \(B_l^< = 0\) here). Exterior: +

+ +

+\[ +V^>(r, \theta) = \sum_{l=0}^{\infty} \frac{B_l^>}{r^{l+1}} P_l (\cos \theta), \hspace{1cm} r \geq R +\label{Gr(3.79)} +\] +

+ +

+(other terms blow up as \(r \rightarrow \infty\), so need \(A_l^> = 0\) here). Since the potential +is continuous at \(r = R\): +

+ +

+\[ +\sum_{l=0}^{\infty} A_l^< R^l P_l (\cos \theta) = \sum_{l=0}^{\infty} \frac{B_l^>}{R^{l+1}} P_l (\cos \theta) +\label{Gr(3.80)} +\] +

+ +

+Since Legendre polynomials are orthogonal, +\[ +B_l^> = A_l^< R^{2l + 1}. +\label{Gr(3.81)} +\] +Surface charge induces discontinuity in derivative of \(V\) from (\ref{Gr(2.36)}): +

+ +

+\[ +\left( \frac{\partial V^>}{\partial r} - \frac{\partial V^ + +

+

+so +

+ +

+\[ +-\sum_{l=0}^\infty (l+1) \left(\frac{B_l^>}{R^{l+2}} + l A_l^< R^{l-1} \right) P_l (\cos \theta) = -\frac{\sigma_0 (\theta)}{\varepsilon_0}, +\rightarrow +\sum_{l=0}^\infty (2l+1) A_l^< R^{l-1} P_l (\cos \theta) = \frac{\sigma_0 (\theta)}{\varepsilon_0} +\label{Gr(3.83)} +\] +

+ +

+Coefficients: from orthogonality relation (\ref{Gr(3.68)}), +

+ +

+\[ +A_l^< = \frac{1}{2\varepsilon_0 R^{l-1}} \int_0^\pi d\theta \sin \theta \sigma_0 (\theta) P_l (\cos \theta). +\label{Gr(3.84)} +\] +

+ +
+ +

+Specific case: choose +

+ +

+\[ +\sigma_0 (\theta) = k \cos \theta = k P_1 (\cos \theta) +\label{Gr(3.85)} +\] +

+ +

+All \(A_l^< = 0\) except for \(l = 1\), in which case +

+ +

+\[ +A_1^< = \frac{k}{2\varepsilon_0} \int_0^\pi d\theta \sin \theta [P_l(\cos \theta)]^2 = \frac{k}{3\varepsilon_0}. +\] +

+ +

+Potential inside/outside the sphere are then: +

+ +

+\[ +V^< (r,\theta) = \frac{k}{3\varepsilon_0} r\cos \theta \hspace{3mm}\mbox{for}~ r \leq R, +\hspace{10mm} +V^> (r, \theta) = \frac{k R^3}{3\varepsilon_0} \frac{\cos \theta}{r^2} \hspace{3mm}\mbox{for}~ r \geq R. +\label{eq:PotentialUniformlyPolarizedSphere} +\] +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es.html b/build/ems_es.html new file mode 100644 index 0000000..cbdd733 --- /dev/null +++ b/build/ems_es.html @@ -0,0 +1,1923 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electrostatics + + +ems.es

+ +
+
+ +Prerequisites + +
    +
  • Vector analysis
  • +
+
+ +
+ +Objectives + +
    +
  • Understand Coulomb's law
  • +
  • Be able to calculate electric fields of point-like and continuous charge distributions
  • +
  • Understand the electrostatic potential and its relation to the electric field
  • +
  • Know the equations for the divergence (Gauss's law) and curl of an electrostatic field, and how to apply them
  • +
  • Know the Poisson and Laplace equations
  • +
  • Understand electrostatic boundary conditions
  • +
  • Understand properties of (ideal) conductors
  • +
+
+
+ + + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_c.html b/build/ems_es_c.html new file mode 100644 index 0000000..51d0b31 --- /dev/null +++ b/build/ems_es_c.html @@ -0,0 +1,1897 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Conductors + + +ems.es.c

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_c_cap.html b/build/ems_es_c_cap.html new file mode 100644 index 0000000..3fc33a1 --- /dev/null +++ b/build/ems_es_c_cap.html @@ -0,0 +1,1935 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Capacitors + + +ems.es.c.cap
+
+

+Two conductors, one at charge \(Q\) and the other at charge \(-Q\). Potential difference is +unambiguous: +

+ +

+\[ +V = V_+ - V_- = -\int_{(-)}^{(+)} {\bf E} \cdot d{\bf l} +\] +

+ +

+Capacitance +

+ +

+\[ +C \equiv \frac{Q}{V} +\label{Gr(2.53)} +\] +

+ +
+

+Example 2.11: +find the capacitance of two concentric spherical metallic shells with radii \(a\) and \(b\). +

+ +

+\[ +V = -\int_b^a {\bf E} \cdot d{\bf l} = \frac{Q}{4\pi \varepsilon_0} (\frac{1}{a} - \frac{1}{b}), \rightarrow +C = \frac{Q}{V} = 4\pi \varepsilon_0 \frac{ab}{b - a}. +\] +

+ +
+

+Work to charge up capacitor: \(dW = \frac{q}{C} dq\). Integrating, +

+ +

+\[ +W = \frac{1}{2} C V^2 +\label{Gr(2.55)} +\] +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_c_ic.html b/build/ems_es_c_ic.html new file mode 100644 index 0000000..54cec17 --- /dev/null +++ b/build/ems_es_c_ic.html @@ -0,0 +1,1913 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Induced Charges + + +ems.es.c.ic
+
+

+Charge in hollow conductor. +Induced surface charges on inside and outside surfaces. +

+ +
+

+Example 2.9: field outside a spherical conductor centered at origin, having +a cavity of a weird shape with a point charge \(q\) somewhere inside. What is the field +outside the sphere ? +Answer: ${\bf E} = \frac{1}{4\pi\varepsilon_0} q \frac{\hat{\bf r}}{r2}.$ +

+ +
+ +

+Namely, the internal surface completely screens the point charge, leaving the field +to be exactly zero (as it should) within the conductor +(that's the idea behind a Faraday cage). By charge conservation, the conductor +remains neutral, so a charge \(q\) distributes itself uniformly over its external surface. +

+
+
+ + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_c_p.html b/build/ems_es_c_p.html new file mode 100644 index 0000000..cb56666 --- /dev/null +++ b/build/ems_es_c_p.html @@ -0,0 +1,1911 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Properties + + +ems.es.c.p
+
+
+

+Basic Properties of a Conductor +

+
    +
  • +(i) \({\bf E} = 0\) inside a conductor.
  • +
  • +(ii) \(\rho = 0\) inside a conductor.
  • +
  • +(iii) Any net charge resides on the surface.
  • +
  • (iv) A conductor is an equipotential.
  • +
  • +(v) \({\bf E}\) is perpendicular to the surface, just outside the conductor.}
  • +
+ +
+

+Note that (iv) links directly with our second case of solving Poisson's equation above: +for a system of conductors held at fixed potentials, the solution is unique. +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_c_sc.html b/build/ems_es_c_sc.html new file mode 100644 index 0000000..9292465 --- /dev/null +++ b/build/ems_es_c_sc.html @@ -0,0 +1,1921 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Surface Charge and the Force on a Conductor + + +ems.es.c.sc
+
+

+For a conductor, we can exploit the fact that electrical fields vanish on the inside to +get a proper boundary condition for the potential. Namely, here, boundary condition +\ref{Gr(2.33)} yields +\[ +{\bf E} = \frac{\sigma}{\varepsilon_0} \hat{\bf n} +\label{Gr(2.48)} +\] +which in terms of potential reads +\[ +\sigma = -\varepsilon_0 \frac{\partial V}{\partial n}. +\label{Gr(2.49)} +\] +The force per unit area on the surface of an object is +\[ +{\bf f} = \sigma {\bf E}_{\mbox{average}} = \frac{\sigma}{2} ({\bf E}_{\mbox{above}} + {\bf E}_{\mbox{below}}) +\label{Gr(2.50)} +\] +For a conductor, \({\bf E}_{\mbox{below}} = 0\), \({\bf E}_{\mbox{above}} = \frac{\sigma}{\varepsilon_0} \hat{\bf n}\), so +\[ +{\bf f} = \frac{\sigma^2}{2\varepsilon_0} \hat{\bf n} +\label{Gr(2.51)} +\] +amounting to an outward electrostatic pressure. In terms of the field, +\[ +P = \frac{\varepsilon_0}{2} E^2 +\label{Gr(2.52)} +\] +which can also be obtained from the principle of virtual work. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_e.html b/build/ems_es_e.html new file mode 100644 index 0000000..1931236 --- /dev/null +++ b/build/ems_es_e.html @@ -0,0 +1,1912 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electrostatic Energy + + +ems.es.e

+ +
+

+We have already seen that the electrostatic potential is the potential energy of a unit charge brought from infinity. +

+ +

+Since the force is proportional to the charge we're moving, +we can calculate the work per unit charge/ \(W_u\) (so \(W = q W_u\)), +

+ +

+\[ +W_u = -\int_{{\bf a}}^{{\bf b}} {\bf E} \cdot d{\bf l} +\] +

+
+ + + + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_e_c.html b/build/ems_es_e_c.html new file mode 100644 index 0000000..f7dfc74 --- /dev/null +++ b/build/ems_es_e_c.html @@ -0,0 +1,1896 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Comments on Electrostatic Energy + + +ems.es.e.c
+
+

+(i) An 'inconsistency' ? No. Self-energy is simply excluded in \ref{Gr(2.42)}, but included +in \ref{eq:Energy_as_int_E2}. +(ii) Is the energy stored in the fields, or in the charges ? Meaningless question at this stage. +Radiation theory points to the preferable interpretation that the energy is stored in the field. +(iii) Superposition. Double the charge: quadruple the energy. +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_e_ccd.html b/build/ems_es_e_ccd.html new file mode 100644 index 0000000..e4981a5 --- /dev/null +++ b/build/ems_es_e_ccd.html @@ -0,0 +1,1985 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Energy of a Continuous Charge Distribution + + +ems.es.e.ccd
+
+

+For this case, \ref{Gr(2.42)} becomes +

+ +

+\[ +W = \frac{1}{2} \int \rho({\bf r}) V({\bf r}) ~d\tau +\label{Gr(2.43)} +\] +

+ +

+Eliminate \(\rho\) and \(V\) in favor of \({\bf E}\): +

+ +

+\[ +\rho = \varepsilon_0 {\boldsymbol \nabla} \cdot {\bf E} +\longrightarrow +W = \frac{\varepsilon_0}{2} \int ({\boldsymbol \nabla} \cdot {\bf E}) ~V d\tau. +\] +

+ +

+Doing integration by parts and using \({\boldsymbol \nabla} V = -{\bf E}\), +

+ +

+\[ +W = \frac{\varepsilon_0}{2} \left( \int_{\cal V} E^2 d\tau + \oint_{\cal S} V {\bf E} \cdot d{\bf a} \right) +\label{Gr(2.44)} +\] +

+ +

+Integrating over all space, +

+
+

+ +

+ +

+\[ + W = \frac{\varepsilon_0}{2} \int E^2 d\tau + \label{eq:Energy_as_int_E2} + \] +

+ +
+ +
+

+Example 2.8: Find the energy of a uniformly charged spherical shell of total charge \(q\) and radius \(R\). +

+ +

+Solution 1: use \ref{Gr(2.43)} in version for surface charges: +

+ +

+\[ +W = \frac{1}{2} \int \sigma V da. +\] +

+ +

+The potential at the surface of the sphere is constant, \(V = \frac{1}{4\pi \varepsilon_0} \frac{q}{R}\), so +

+ +

+\[ +W = \frac{1}{8\pi \varepsilon_0} \frac{q}{R} \int \sigma da = \frac{1}{8\pi \varepsilon_0} \frac{q^2}{R}. +\] +

+ +

+Solution 2: use \ref{eq:Energy_as_int_E2}. Inside sphere: \({\bf E} = 0\); outside, +

+ +

+\[ +{\bf E} = \frac{1}{4\pi \varepsilon_0} q \frac{\hat{\bf r}}{r^2} \rightarrow E^2 = \frac{q^2}{(4\pi \varepsilon_0)^2 r^4}. +\] +

+ +

+so +\[ + W = \frac{\varepsilon_0}{2} \int_{outside~sphere} \frac{q^2}{(4\pi \varepsilon_0)^2 r^4} r^2 \sin \theta dr d\theta d\phi += \frac{1}{32 \pi^2 \varepsilon_0} q^2 4\pi \int_R^{\infty} \frac{dr}{r^2} = \frac{1}{8\pi \varepsilon_0} \frac{q^2}{R}. +\] +

+ +
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_e_pcd.html b/build/ems_es_e_pcd.html new file mode 100644 index 0000000..8209668 --- /dev/null +++ b/build/ems_es_e_pcd.html @@ -0,0 +1,1901 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Energy of a Point Charge Distribution + + +ems.es.e.pcd
+
+

+The last version can also be rewritten in terms of the potential, +

+ +

+\[ +W = \frac{1}{2} \sum_{i=1}^m q_i V({\bf r}_i) +\label{Gr(2.42)} +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ec.html b/build/ems_es_ec.html new file mode 100644 index 0000000..8977da6 --- /dev/null +++ b/build/ems_es_ec.html @@ -0,0 +1,1897 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electric Charge + + +ems.es.ec

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ec_b.html b/build/ems_es_ec_b.html new file mode 100644 index 0000000..cc0c358 --- /dev/null +++ b/build/ems_es_ec_b.html @@ -0,0 +1,1889 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Basics + + +ems.es.ec.b
+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ec_c.html b/build/ems_es_ec_c.html new file mode 100644 index 0000000..b1025fa --- /dev/null +++ b/build/ems_es_ec_c.html @@ -0,0 +1,1889 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Conservation + + +ems.es.ec.c
+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ec_q.html b/build/ems_es_ec_q.html new file mode 100644 index 0000000..85647f8 --- /dev/null +++ b/build/ems_es_ec_q.html @@ -0,0 +1,1889 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Quantization + + +ems.es.ec.q
+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ec_s.html b/build/ems_es_ec_s.html new file mode 100644 index 0000000..1f444b4 --- /dev/null +++ b/build/ems_es_ec_s.html @@ -0,0 +1,1892 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Structure + + +ems.es.ec.s
+
+

+Point charges: reality or idealization? +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ef.html b/build/ems_es_ef.html new file mode 100644 index 0000000..d70ab53 --- /dev/null +++ b/build/ems_es_ef.html @@ -0,0 +1,1897 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electrostatic Fields + + +ems.es.ef

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ef_Gl.html b/build/ems_es_ef_Gl.html new file mode 100644 index 0000000..764a256 --- /dev/null +++ b/build/ems_es_ef_Gl.html @@ -0,0 +1,2132 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Gauss's Law: the divergence of \({\bf E}\) + + +ems.es.ef.Gl
+
+
+ +
+
Field Lines, Flux and Gauss's Law
+
+

+We have seen that the curl of the electrostatic field vanishes. +In view of the Helmhotz Theorem, this is but one (actually: 3, +since it's a vector equation) of the differential equations we need +to fix \({\bf E}\). We also need the divergence of \({\bf E}\). +

+ +

+Feynman's 'bullets flying out'. +'Conservation' related to \(1/r^2\) (think of volume section +in space with walls radially oriented. Flux. +

+ +

+If there is no charge within a volume \({\cal V}\) encompassed within the closed +surface \({\cal S}\), +

+ +

+\[ +\oint {\bf E} \cdot d{\bf a} = 0. +\] +

+ +

+However, if there is a charge inside, we don't get zero. Considering a little +sphere of radius \(r\) around the charge, +

+ +

+\[ +\oint {\bf E} \cdot d{\bf a} = \frac{1}{4\pi\varepsilon_0} \int_{\cal S} \frac{q}{r^2} \hat{\bf r} \cdot \hat{\bf r} +r^2 \sin \theta d\theta d\phi = \frac{q}{\varepsilon_0} +\label{Gr(2.12)} +\] +

+ +

+so by superposition, we obtain +

+
+

+Gauss' law (in integral form) +

+ +

+\[ + \oint_{\cal S} {\bf E} \cdot d{\bf a} = \frac{Q_{\mbox{enc}}}{\varepsilon_0} + \label{Gr(2.13)} + \] +

+ +

+where \(Q_{\mbox{enc}}\) is the total charge enclosed by \({\cal S}\). +

+ +
+ +

+By applying the divergence theorem, +

+ +

+\[ +\oint_{\cal S} {\bf E} \cdot d{\bf a} = \int_{\cal V} {\boldsymbol \nabla} \cdot {\bf E} ~d\tau +\] +

+ +

+and using \(Q_{\mbox{enc}} = \int_{\cal V} \rho d\tau\), and using the fact the the choice of volume +is arbitrary, we get +

+
+

+Gauss' law in differential form +

+ +

+\[ + {\boldsymbol \nabla} \cdot {\bf E} = \frac{\rho}{\varepsilon_0}. + \label{Gr(2.14)} + \] +

+ +
+ +

+We can also compute the divergence of \({\bf E}\) directly from \ref{eq:E_from_rho}: +

+ +

+\[ +{\boldsymbol \nabla} \cdot {\bf E} = \frac{1}{4\pi \varepsilon_0} \int d\tau' \rho({\bf r}') {\boldsymbol \nabla} \cdot \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3}. +\] +

+ +

+Using \ref{Gr(1.100)}, +

+ +

+\[ +{\boldsymbol \nabla} \cdot {\bf E} = \frac{1}{4\pi \varepsilon_0} \int d\tau' \rho({\bf r}') 4\pi \delta ({\bf r} - {\bf r}') = \frac{\rho({\bf r})}{\varepsilon_0} +\label{Gr(2.16)} +\] +

+ +

+which is Gauss's law in differential form. +

+ +

+As a simple self-consistency exercise, check that you can recover the integral +form by integrating and applying Gauss's divergence theorem. +

+
+
+ + +
+
Examples of applications of Gauss's law
+
+

+Gauss's law in integral form is really useful when there is spherical, +cylindrical or plane symmetry. +

+ +

+Gaussian surfaces: respectively, concentric sphere, coaxial cylinder, pillbox. +

+ +
+

+Example 2.2: Field outside a uniformly charged sphere of radius \(R\) and total charge \(q\). +

+ +

+Solution: consider a Gaussian surface which is a sphere of radius \(r > R\). Use spherical symmetry: +

+ +

+\[ +\oint_{\cal S} {\bf E} \cdot d{\bf a} = \oint_{\cal S} |{\bf E}| da = |{\bf E}| 4\pi r^2 +\] +

+ +

+since \({\bf E} = |{\bf E}| \hat{\bf r}\) and \(d{\bf a} = da \hat{\bf r}\). Therefore, +

+ +

+\[ +{\bf E} = \frac{1}{4\pi \varepsilon_0} q \frac{\hat{\bf r}}{r^2}. +\] +

+ +

+Same as point charge at origin! +

+ +
+ +
+

+Example 2.3: infinitely long cylinder carrying charge density \(\rho = k s\) for some constant \(k\). Find \({\bf E}\) within the cylinder. +

+ +

+Solution: Gaussian cylinder of length \(l\) and radius \(s\). Enclosed charge: +

+ +

+\[ +Q_{\mbox{enc}} = \int d\tau \rho = \int_0^l dz \int_0^{2\pi} d\phi \int_0^s ds' (k s') s' = 2\pi k l \int_0^s ds' s'^2 = \frac{2\pi}{3} kls^3. +\] +

+ +

+Symmetry: \({\bf E}\) must be radially outward, so \({\bf E} = |{\bf E}| \hat{\bf s}\). The surface integral +has no contribution from the ends of the cylinder, and +

+ +

+\[ +\oint {\bf E} \cdot d{\bf a} = \int |{\bf E}| da = |{\bf E}| \int da = |{\bf E}| \int_0^l dz \int_0^{2\pi} d\phi s = |{\bf E}| ~2\pi l s. +\] +

+ +

+Therefore, +

+ +

+\[ +{\bf E} = \frac{1}{3\varepsilon_0} ks^2 \hat{\bf s}. +\] +

+ +
+ + +
+

+Example 2.4: infinite plane (defined by \(z = 0\)) with uniform surface charge density \(\sigma\). Find \({\bf E}\). +

+ +

+Solution: Gaussian pillbox of area \(A = l_x l_y\) extending equal distances above and below plane. +

+ +

+Enclosed charge: \(Q_{\mbox{enc}} = \sigma A\). Top and bottom surfaces yield \(\int {\bf E} d{\bf a} = 2A |{\bf E}|\). Sides contribute nothing. Thus, +

+ +

+\[ +{\bf E} = \frac{\sigma}{2\varepsilon_0} \hat{\bf n} = \frac{\sigma}{2\varepsilon_0} \frac{z}{|z|} \hat{\bf z} +\label{Gr(2.17)} +\] +

+ +

+where \(\hat{\bf n}\) is a unit vector extending away from the plane. Independent of distance from plane! +

+ +
+ +
+

+Example 2.5: two infinite planes (put them vertical) carrying equal but opposite uniform surface charge densities \(\pm \sigma\). +

+ +

+Solution: fields cancel to left and right of both planes. Between planes: field is \(\frac{\sigma}{\varepsilon_0}\) and points from \(-\) surface to \(+\) one. +

+ +
+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ef_cE.html b/build/ems_es_ef_cE.html new file mode 100644 index 0000000..e4e2e12 --- /dev/null +++ b/build/ems_es_ef_cE.html @@ -0,0 +1,1965 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Curl of \({\bf E}\) + + +ems.es.ef.cE
+
+

+As a consequence of \ref{Gr(2.22)}, we immediately see that the work done when travelling +in any closed path vanishes, that is: +

+ +
+

+ + + + +

+
+
    +
  • Gr (2.19)
  • +
+ +
+ +
+
+

+ +

+ +

+\[ + \oint {\bf E} \cdot d{\bf l} = 0 + \tag{ointE0}\label{ointE0} + \] +

+ +
+ +

+which by Stokes' theorem implies that the electrostatic field is curlless, +

+ +
+

+ + + + +

+
+
    +
  • Gr (2.20)
  • +
+ +
+ +
+
+

+\[ + {\boldsymbol \nabla} \times {\bf E} = 0. + \tag{curlE0}\label{curlE0} + \] +

+ +
+

+By the superposition principle, this therefore applies to any combination +of electrostatic fields. +

+ +

+One important point to make is that this fact is only related to the fact that +electrostatic forces are central forces, i.e. they act purely radially +along the line connecting the point charges. It has nothing to do with the fact +that the force falls off with \(1/r^2\): any central force, irrespective of how it +falls off, has the property that the work done is independent of the path. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ef_ccd.html b/build/ems_es_ef_ccd.html new file mode 100644 index 0000000..5d18599 --- /dev/null +++ b/build/ems_es_ef_ccd.html @@ -0,0 +1,2064 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Electrostatic Field of Continuous Charge Distributions + + +ems.es.ef.ccd
+
+

+The electric field generated by a continuous charge density \(\rho({\bf r})\) in volume \({\cal V}\) can be easily +calculated from Coulomb's law using the superposition principle. Since each infinitesimal +volume element \(d\tau' = dx' dy' dz'\) contains a charge \(dq' = \rho({\bf r}') d\tau'\), we have +

+ +
+

+ + + + +

+
+
    +
  • Gr4(2.8)
  • +
  • W3(??)
  • +
+ +
+ +
+
+

+ +

+ +

+\[ +{\bf E} ({\bf r}) = \frac{1}{4\pi\varepsilon_0} \int_{\cal V} d\tau' \rho({\bf r}') \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} +\tag{E_vcd}\label{E_vcd} +\] +

+ +
+ + +

+Similarly, if the charge is spread out over a two-dimensional surface \({\cal S}\) with (surface) charge density +\(\sigma({\bf r})\), we have over an infinitesimal area \(da'\) a charge \(dq' = \sigma({\bf r}') da'\), so +

+ +
+

+ + + + +

+
+
    +
  • Gr4(2.7)
  • +
+ +
+ +
+
+

+ +

+ +

+\[ + {\bf E} ({\bf r}) = \frac{1}{4\pi\varepsilon_0} \int_{\cal S} da' \sigma({\bf r}') \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} + \tag{E_scd}\label{E_scd} + \] +

+ +
+

+Finally, for a line path \({\cal P}\) with linear charge density \(\lambda({\bf r}')\), +

+ +
+

+ + + + +

+
+
    +
  • Gr (2.6)
  • +
+ +
+ +
+
+

+ +

+ +

+\[ + {\bf E} ({\bf r}) = \frac{1}{4\pi\varepsilon_0} \int_{\cal P} dl' \lambda({\bf r}') \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} + \tag{E_lcd}\label{E_lcd} + \] +

+ +
+ +
+

+Example +

+ +

+Find the electric field a distance \(z\) above the midpoint of a straight line segment +of length \(2L\) carrying a uniform line charge \(\lambda\). +

+ +

+Solution: placing the line on the \(x\) axis, we have +

+ +\begin{align*} + {\bf r} &= z \hat{\bf z}, {\bf r}' = x \hat{\bf x}, dl' = dx, + |{\bf r} - {\bf r}'| = \sqrt{z^2 + {x}^2}, +\end{align*} + +

+so we have +

+ +\begin{align*} + {\bf E} = \frac{1}{4\pi \varepsilon_0} \int_{-L}^L dx' \lambda \frac{z \hat{\bf z} - x \hat{\bf x}}{(z^2 + x^2)^{3/2}} + = \frac{\lambda}{4\pi \varepsilon_0} \left[ z \hat{\bf z} \int_{-L}^L dx \frac{1}{(z^2 + x^2)^{3/2}} - \hat{\bf x} \int_{-L}^L dx \frac{x}{(z^2 + x^2)^{3/2}} \right] +\end{align*} + +

+The second integral vanishes by symmetry, whereas the first can be done in many ways, +most easily by observing that \(\frac{d}{dx} \left( \frac{x}{\sqrt{z^2 + x^2}} \right) + = \frac{1}{\sqrt{z^2 + x^2}} - \frac{x^2}{(z^2 + x^2)^{3/2}} = \frac{z^2}{(z^2 + x^2)^{3/2}}\), +leading to +

+ + +\begin{align} + {\bf E} = \frac{\lambda}{4\pi \varepsilon_0} z \hat{\bf z} \left. \left( \frac{x}{z^2\sqrt{z^2 + x^2}} \right) \right|_{-L}^L + = \frac{1}{4\pi \varepsilon_0} \frac{2\lambda L}{z \sqrt{z^2 + L^2}} \hat{\bf z}. +\end{align} + +

+For large distances \(z \gg L\), this looks like the field of a point charge \(q\lambda L\): +

+ +

+\({\bf E} = \frac{1}{4\pi \varepsilon_0} \frac{2\lambda L}{z^2} \hat{\bf z}\), +

+ +

+whereas for short distances \(z \ll L\) the field looks like that of an infinite wire: +

+ +

+\({\bf E} = \frac{1}{4\pi \varepsilon_0} \frac{2\lambda}{z}\). +

+ +
+
+
+ + + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ef_pc.html b/build/ems_es_ef_pc.html new file mode 100644 index 0000000..2de4996 --- /dev/null +++ b/build/ems_es_ef_pc.html @@ -0,0 +1,1962 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Electrostatic Field of Point Charges + + +ems.es.ef.pc
+
+

+Our tendency is to think that force acts locally, not remotely. +It is thus natural to imagine a "vehicle" through which one charge exerts +a force on another. This leads us to an important first abstraction, that of +the electrostatic field. +

+ +

+Going back to our source and test charge setup, we shall thus think of the +force on the test charge as being given by its coupling to +an electric field originating from the source charge. Invoking the +superposition principle, we can thus write +

+ +
+

+ +

+ +

+\[ + {\bf F}_t = q_t {\bf E}({\bf r}_t) + \label{Gr(2.3)} + \] +

+ +
+

+where +

+
+

+ +

+ +

+\[ + {\bf E} ({\bf r}) \equiv \frac{1}{4\pi \varepsilon_0} \sum_{i=1}^n q_i \frac{{\bf r} - {\bf r}_i}{|{\bf r} - {\bf r}_i|^3} + \label{Gr(2.4)} + \] +

+ +
+

+The electric field \({\bf E} ({\bf r})\) is thus the force per unit charge that would +be exerted if you put a test charge at position \({\bf r}\). +

+ +
+

+Example +

+ +

+Find the field at distance \(z\) above the midpoint between two equal +charges \(q\) placed a distance \(d\) apart from each other. +

+ +

+Solution: by symmetry, only the \(\hat{\bf z}\) part of the field is nonvanishing. +We have \(|{\bf r} - {\bf r}'| = \sqrt{z^2 + (d/2)^2}\) for both charges and \(\cos \theta = z/|{\bf r} - {\bf r}'|\) so +

+ +

+\[ + {\bf E} = \frac{1}{4\pi \varepsilon_0} \frac{2q z}{|{\bf r} - {\bf r}'|^{3/2}} \hat{\bf z} +\] +

+ +
+
+
+ + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_efo.html b/build/ems_es_efo.html new file mode 100644 index 0000000..a8ff1dc --- /dev/null +++ b/build/ems_es_efo.html @@ -0,0 +1,1897 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electric Force and Energy + + +ems.es.efo

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_efo_cl.html b/build/ems_es_efo_cl.html new file mode 100644 index 0000000..8ac16ab --- /dev/null +++ b/build/ems_es_efo_cl.html @@ -0,0 +1,2004 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Coulomb's Law + + +ems.es.efo.cl
+
+
+

+ + + + +

+
+
    +
  • FLS II (4.9)
  • +
  • Gr (2.1)
  • +
  • PM (1.1)
  • +
  • PS (3.1)
  • +
  • W (2.3)
  • +
+ +
+ +
+
+

+The force \(F_{t\leftarrow s}\) exerted by a point source charge \(q_s\) sitting at \({\bf r}_s\) +on a point test charge \(q_t\) sitting at \({\bf r}_t\) is given by Coulomb's law, +

+ +

+\[ +{\bf F}_{t\leftarrow s} = \frac{q_t q_s}{4\pi \varepsilon_0} +\frac{{\bf r}_t - {\bf r}_s}{|{\bf r}_t - {\bf r}_s|^3} += \frac{q_t q_s}{4\pi \varepsilon_0} \frac{\hat{\bf r}_{ts}}{r_{ts}^2} +\tag{Cl}\label{Cl} +\] +

+ +
+ + +

+in which \(\varepsilon_0\), called the permittivity of free space +(or alternately vacuum permittivity or sometimes electric constant), takes the value +

+ +

+\[ + \varepsilon_0 \equiv \frac{1}{\mu_0 c^2} = \frac{1}{35 950 207 149.472 7056 \pi} F/m \\ + \simeq 8.854 187 817 ... \times 10^{-12} F/m +\] +

+ +

+in which \(\mu_0\) is the vacuum permeability (or alternately permeability of free space, +permeability of vacuum or magnetic constant), +

+ +

+\[ + \mu_0 = 1.25663706212(19)x10^{-6} H/m +\] +

+ +

+with the henry \(H = kg~m^2 / s^2 A^2\) being the unit for inductance. +

+ +
+

+Info: the International System of Units +

+ +

+Throughout these notes we will use the International System of Units (SI). +Units are perhaps less set in stone than you might think, because of their interdependence. +For example, the speed of light is a measurable constant of nature, and therefore one must +be careful when defining the metre and the second. +

+ +

+Since 1960, the speed of light is defined to be exactly \(299 792 458 ~m/s\). +Since 1983, the metre is defined as the distance travelled by light in +\(1/299 792 458 s\). +

+ +

+In the good old days (namely up to 2019), the vacuum permeability was defined +to have the handy value \(\mu_0 = 4\pi \times 10^{-7} H/m\). This is no longer true. +

+ +

+The 2019 SI redefinition uses seven base units: second (s), metre (m), +kilogram (kg), Ampere (A), kelvin (K), mole (mol) +and candela (cd), all defined in terms of invariant constants of nature. +

+ +

+The vacuum permeability is thus no longer a defined constant and must be measured +experimentally (it depends on the fine structure constant +as \(\mu_0 = 2\alpha \frac{h}{e^2 c}\)). Its currently measured value is given in the main text. +

+ +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_efo_e.html b/build/ems_es_efo_e.html new file mode 100644 index 0000000..ed8dcf9 --- /dev/null +++ b/build/ems_es_efo_e.html @@ -0,0 +1,2001 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Energy in Systems of Point Charges + + +ems.es.efo.e
+
+
+ +
+
Work; Pairwise Energy
+
+

+Consider some distribution of charge which produces an electric field. +How much work is needed to carry a small test charge \(q_t\) from one place to another, i.e. from point \({\bf a}\) to point \({\bf b}\) ? +

+ +

+The work done in carrying this charge along some path is the negative of +the electrical force in the direction of motion, so +

+ +

+\[ +W = -\int_{{\bf a}}^{{\bf b}} {\bf F} \cdot d{\bf l} +\] +

+ +

+Let's consider for simplicity a fixed source particle of charge \(q_s\) at position \({\bf r}_s \equiv {\bf 0}\). The work done against electrical forces when moving a unit charge test particle from \({\bf a}\) to \({\bf b}\) is then: +

+ +

+\[ +-\int_{\bf a}^{\bf b} {\bf F} \cdot d{\bf l} += -\frac{q_t q_s}{4\pi \varepsilon_0} \int_{\bf a}^{\bf b} \frac{\bf r}{r^3} \cdot d{\bf r} +\] +

+ +

+For the path, the 'angular' part is not contributing (see drawings in +FLS II 4-3). The integral is thus purely radial, +

+ +
+
+
    +
  • Gr (2.18)
  • +
+ +
+ +
+\begin{equation} +-\int_{\bf a}^{\bf b} {\bf F} \cdot d{\bf l} += -\frac{q_t q_s}{4\pi \varepsilon_0} \int_{r_a}^{r_b} \frac{dr}{r^2} = \frac{q_t q_s}{4\pi \varepsilon_0} \left(\frac{1}{r_b} - \frac{1}{r_a}\right). +\label{Gr(2.18)} +\end{equation} + +

+As should be clear by now, this result does not depend on the path +(if it did, we'd have a perpetuum mobile when going from \({\bf r}_a\) +to \({\bf r}_a\) one way, and coming back another). +

+ +

+When thinking about the energy of this pair of charges, we think +of starting from an initial configuration where the charges are infinitely +distance (which we associate to zero energy), and thus set \({\bf r}_a = \infty\). +We can thus write +

+ +

+\[ +W = \frac{1}{4\pi \varepsilon_0} \frac{q_t q_s}{|{\bf r}_t - {\bf r}_s|} +\] +

+ + +
+

+Example: fission +

+ +
+
+
+ +
+
Generic assembly
+
+

+By the superposition principle, the energy of a generic assembly of +charges \(\{ q_i \}\), \(i = 1, .. n\) (sitting at positions \({\bf r}_i\)) +is obtained by the pairwise sum (counting each pair only once) +of pairwise energies: +

+ +

+\[ +W = \frac{1}{4\pi \varepsilon_0} \sum_{i=1}^n \sum_{j > i}^n \frac{q_i q_j}{|{\bf r}_i - {\bf r}_j|} += \frac{1}{8\pi \varepsilon_0} \sum_{i=1}^n \sum_{j \neq i}^n \frac{q_i q_j}{|{\bf r}_i - {\bf r}_j|} +\label{Gr(2.41)} +\] +

+ +

+where in the second equality we have symmetrized the sums for convenience. +

+
+
+ +
+
Crystal lattices
+
+

+PM3:1.6 +

+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_efo_exp.html b/build/ems_es_efo_exp.html new file mode 100644 index 0000000..5dac6a3 --- /dev/null +++ b/build/ems_es_efo_exp.html @@ -0,0 +1,1903 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Experimental Investigations + + +ems.es.efo.exp
+
+
+ + + + +
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_efo_ps.html b/build/ems_es_efo_ps.html new file mode 100644 index 0000000..13d3e1a --- /dev/null +++ b/build/ems_es_efo_ps.html @@ -0,0 +1,1906 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Principle of Superposition + + +ems.es.efo.ps
+
+
+

+Electrical forces obey the principle of superposition: +the electrostatic interaction between two charged particles is left entirely +unaffected by the presence of other charges. The total force on a +test charge \(q_t\) generated by a number of static point charges \(q_i\), \(i = 1, ..., n\) is thus +

+ +

+\[ +{\bf F}_t = \sum_{i=1}^n {\bf F}_{t \leftarrow i} +\] +

+ +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ep.html b/build/ems_es_ep.html new file mode 100644 index 0000000..1f7c5c2 --- /dev/null +++ b/build/ems_es_ep.html @@ -0,0 +1,1899 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electrostatic Potential + + +ems.es.ep

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ep_PL.html b/build/ems_es_ep_PL.html new file mode 100644 index 0000000..6e7ed7d --- /dev/null +++ b/build/ems_es_ep_PL.html @@ -0,0 +1,1928 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Poisson Equation and the Laplace Equation + + +ems.es.ep.PL
+
+

+Our two fundamental equations for the electrostatic field are +\[ +{\boldsymbol \nabla} \cdot {\bf E} = \frac{\rho}{\varepsilon_0} +\hspace{2cm} +{\boldsymbol \nabla} \times {\bf E} = 0. +\] +For the electrostatic potential, Gauss' law becomes +

+
+

+The Poisson equation +\[ + {\boldsymbol \nabla}^2 V = -\frac{\rho}{\varepsilon_0} + \label{eq:Poisson} + \] +

+ +
+

+When the charge density vanishes, it becomes more simply +

+
+

+The Laplace Equation +\[ + {\boldsymbol \nabla}^2 V = 0 + \label{eq:Laplace} + \] +

+ +
+ +

+Since the curl of a gradient is always zero, we by construction have +\({\boldsymbol \nabla} \times {\bf E} = - {\boldsymbol \nabla} \times ({\boldsymbol \nabla} V) = 0\). +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ep_bc.html b/build/ems_es_ep_bc.html new file mode 100644 index 0000000..61f77a2 --- /dev/null +++ b/build/ems_es_ep_bc.html @@ -0,0 +1,1957 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Electrostatic Boundary Conditions + + +ems.es.ep.bc
+
+

+For a surface, Gauss's law states +\[ +\oint_{\cal S} {\bf E} \cdot d{\bf a} = \frac{Q_{\mbox{enc}}}{\varepsilon_0} = \frac{1}{\varepsilon_0} \sigma A +\] +where \(A\) is the area of the Gaussian pillbox and \(\sigma\) the surface charge density. +The sides contribute nothing if the pillbox is thin. Taking its area very small, we get +\[ +{\bf E}^{\perp}_{\mbox{above}} - {\bf E}^{\perp}_{\mbox{below}} = \frac{\sigma}{\varepsilon_0}, +\label{Gr(2.31)} +\] +so the normal component of \({\bf E}\) is discontinuous at the boundary by an amount \(\sigma/\varepsilon_0\). +

+ +

+The tangential component is continuous: from the curlless condition \ref{Gr(2.19)} applied to +a small loop straddling the surface, +\[ +{\bf E}^{\parallel}_{\mbox{above}} = {\bf E}^{\parallel}_{\mbox{below}} +\label{Gr(2.32)} +\] +

+ +

+Put together: +\[ +{\bf E}_{\mbox{above}} - {\bf E}_{\mbox{below}} = \frac{\sigma}{\varepsilon_0} \hat{\bf n} +\label{Gr(2.33)} +\] +with \(\hat{\bf n}\) a unit vector normal to the surface, pointing 'out'. +

+ +

+The potential is continuous across any boundary: since +\[ +V_{\mbox{above}} - V_{\mbox{below}} = -\int_{\bf a}^{\bf b} {\bf E} \cdot d{\bf l} +\] +where the path shrinks to zero, +\[ +V_{\mbox{above}} = V_{\mbox{below}} +\label{Gr(2.34)} +\] +The gradient however inherits the discontinuity of the electrostatic field, since +\({\bf E} = -{\boldsymbol \nabla} V\): +\[ +{\boldsymbol \nabla} V_{\mbox{above}} - {\boldsymbol \nabla} V_{\mbox{below}} = -\frac{\sigma}{\varepsilon_0} \hat{\bf n} +\label{Gr(2.35)} +\] +or +\[ +\frac{\partial V_{\mbox{above}}}{\partial n} - \frac{\partial V_{\mbox{below}}}{\partial n} = -\frac{\sigma}{\varepsilon_0} +\label{Gr(2.36)} +\] +where +\[ +\frac{\partial V}{\partial n} = {\boldsymbol \nabla} V \cdot \hat{\bf n} +\label{Gr(2.37)} +\] +is the normal derivative of the potential. +

+ +

+This is the kind of boundary condition that we need to fix a unique solution to Poisson's equation: +our only problem is that \ref{Gr(2.36)} gives the change of the normal derivative of \(V\), not +its value. However, if we assume (as in our first case corollary) that there are no charges living outside +of our volume \({\cal V}\), we find that \ref{Gr(2.36)} fully specifies the potential's normal derivative +if the surface charge is known. +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ep_c.html b/build/ems_es_ep_c.html new file mode 100644 index 0000000..516388d --- /dev/null +++ b/build/ems_es_ep_c.html @@ -0,0 +1,1911 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Comments on the Electrostatic Potential + + +ems.es.ep.c
+
+

+(i) The name. It's fine by me. I don't see what Griffiths' problem is +(more precisely: Griffiths sees a problem where there isn't one). +(ii) Advantages. In view of \ref{Gr(2.23)}, it's much simpler to first calculate +the potential (which is a scalar field), and to then calculate the electrostatic field +(which is a vector field). +

+ +

+But how can a vector field (3 components, so 3 functions) be generated by a scalar field +(one component, so one function) ? Griffiths mentions that \ref{Gr(2.20)} explains this. +For curious students, resolve this paradox: \ref{Gr(2.20)}, when written out in +components, gives 3 functional constraints on the electric field. We might thus think that +we have no freedom left. How come we thus end up with a 'one function' degree of freedom ? +(iii) The reference point. Not a problem to put it at infinity if we only use +charge distributions which don't go to infinity. Otherwise, choose a different point! +(iv) Superposition principle. Already mentioned. +(v) Units. Newton-meters per coulomb or joules per coulomb, which is called a volt. +In the SI system where the ampere is a base unit, a volt is a \(kg m^2/s^3 A\). +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ep_d.html b/build/ems_es_ep_d.html new file mode 100644 index 0000000..55edeb9 --- /dev/null +++ b/build/ems_es_ep_d.html @@ -0,0 +1,1973 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Definition + + +ems.es.ep.d
+
+

+Since this work is independent of the path chosen, we can define a function called the electrostatic potential +

+
+

+ + + + +

+
+
    +
  • Gr (2.21)
  • +
+ +
+ +
+

+\[ +V({\bf r}) \equiv -\int_{\cal O}^{\bf r} {\bf E} \cdot d{\bf l} +\tag{es_pot}\label{es_pot} +\] +where \({\cal O}\) is some chosen reference point. The potential difference between two points is +well-defined without the need to specify the reference point, +

+
+

+\[ + V({\bf b}) - V({\bf a}) = - \int_{\bf a}^{\bf b} {\bf E} \cdot d{\bf l} + \label{Gr(2.22)} + \] +

+ +
+

+Thus, the electrostatic potential is interpreted as the potential energy which a unit charge would +have obtained if brought to the specified point from the reference point, in other words the work you need to +do on the unit charge to bring it there. +Often, we put the reference point at infinity. The electrostatic potential coming from a single +point charge \(q\) at the origin then becomes +\[ +V({\bf r}) = \frac{1}{4\pi \varepsilon_0} \frac{q}{r} +\label{Gr(2.26)} +\] +The electrostatic potential moreover inherits the superposition principle from the electric field, +so for a distribution of point charges \(q_i\) at positions \({\bf r}_i\), we have +

+
+

+\[ + V({\bf r}) = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{|{\bf r} - {\bf r}_i|} + \label{Gr(2.27)} + \] +

+ +
+

+For a continuous charge density in a volume \({\cal V}\), we have +

+
+

+\[ + V({\bf r}) = \frac{1}{4\pi \varepsilon_0} \int_{\cal V} d\tau' \frac{\rho({\bf r}')}{|{\bf r} - {\bf r}'|}, + \label{eq:V_from_rho} + \] +

+ +
+

+whereas for a surface or line charge distribution, respectively, +

+
+

+\[ + V({\bf r}) = \frac{1}{4\pi \varepsilon_0} \int_{\cal S} da' \frac{\sigma({\bf r}')}{|{\bf r} - {\bf r}'|}, + \hspace{2cm} + V({\bf r}) = \frac{1}{4\pi \varepsilon_0} \int_{\cal P} dl' \frac{\lambda({\bf r}')}{|{\bf r} - {\bf r}'|}. + \label{Gr(2.30)} + \] +

+ +
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ep_ex.html b/build/ems_es_ep_ex.html new file mode 100644 index 0000000..cbe1088 --- /dev/null +++ b/build/ems_es_ep_ex.html @@ -0,0 +1,1962 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Example calculations for the potential + + +ems.es.ep.ex
+
+
+

+Example 2.6: find the potential inside and outside a spherical shell or radius \(R\) +centered at origin, which carries uniform surface charge. Ref point at infinity. +Solution: from Gauss's law, +\[ +{\bf E} = \frac{1}{4\pi \varepsilon_0} q \frac{\hat{\bf r}}{r^2}, \hspace{5mm} r > R, \hspace{2cm} +{\bf E} = 0, \hspace{5mm} r < R. +\] +Thus: using spherical symmetry, for \(r > R\): +\[ +V(r > R) = -\int_{{\cal O}: \infty}^{\bf r} {\bf E} \cdot d{\bf l} = -\frac{1}{4\pi \varepsilon_0} \int_{\infty}^r q \frac{dr'}{r'^2} += \frac{1}{4\pi \varepsilon_0} \frac{q}{r}, \hspace{5mm} r > R. +\] +For \(r < R\), the integrand vanishes for the part \(r < R\), and +\[ +V(r < R) = V(R) = \frac{1}{4\pi \varepsilon_0} \frac{q}{R}. +\] +

+ +
+ +
+

+Example 2.7: find the potential of a uniformly charged spherical shell of radius \(R\) (same problem as 2.6, but now done with \ref{Gr(2.30)}). +Solution: Use +\[ +V({\bf r}) = \frac{1}{4\pi \varepsilon_0} \int da' \frac{\sigma}{|{\bf r} - {\bf r}'|}. +\] +Put \({\bf r}\) on \(\hat{\bf z}\) axis so \({\bf r} = z \hat{\bf z}\), use law of cosines: +\[ +

+ + + +++ ++ + + + + + + +
{\bf r} - {\bf r}'= R2 + z2 - 2Rz cos θ'
+

+\] +Element of surface area: \(R^2 \sin \theta' d\theta' d\phi'\), so +

+\begin{align} +4\pi \varepsilon_0 V(z) &= \sigma \int_0^{\pi} d\theta' \int_0^{2\pi} d\phi' \frac{R^2 \sin \theta'}{\sqrt{R^2 + z^2 - 2Rz \cos \theta'}} \nonumber \\ +&= 2\pi R^2 \sigma \int_0^{\pi} d\theta' \frac{\sin \theta'}{\sqrt{R^2 + z^2 - 2Rz \cos \theta'}} \nonumber \\ +&= 2\pi R^2 \sigma \left. \left( \frac{\sqrt{R^2 + z^2 - 2Rz \cos \theta'}}{Rz} \right)\right|_0^{\pi} \nonumber \\ +&= \frac{2\pi R\sigma}{z} \left(\sqrt{R^2 + z^2 + 2Rz} - \sqrt{R^2 + z^2 - 2Rz} \right) \nonumber \\ +&= \frac{2\pi R \sigma}{z} \left( \sqrt{(R + z)^2} - \sqrt{(R - z)}^2 \right). +\end{align} +

+Take positive root: +

+\begin{align} +V(z) = \frac{R\sigma}{2\varepsilon_0 z} ((R+z) - (z-R)) = \frac{R^2 \sigma}{\varepsilon_0 z}, \hspace{1cm} \mbox{outside}, \nonumber \\ +V(z) = \frac{R\sigma}{2\varepsilon_0 z} ((R+z) - (R-z)) = \frac{R \sigma}{\varepsilon_0}, \hspace{1cm} \mbox{inside}. +\end{align} +

+In terms of total charge on shell, \(q = 4\pi R^2 \sigma\), \(V(z) = \frac{1}{4\pi \varepsilon_0} \frac{q}{z}\) outside, +and \(V(z) = \frac{1}{4\pi \varepsilon_0} \frac{q}{R}\) inside. +

+ +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_es_ep_fp.html b/build/ems_es_ep_fp.html new file mode 100644 index 0000000..85542b7 --- /dev/null +++ b/build/ems_es_ep_fp.html @@ -0,0 +1,1923 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Field in terms of the potential + + +ems.es.ep.fp
+
+

+Relation espot gives us the potential in terms of the field. Let us now try to find +a relationship giving the field in terms of the potential. For this, we look again at +\ref{Gr(2.22)}. By the fundamental theorm for gradients, this also equals +\[ +V({\bf b}) - V({\bf a}) = \int_{\bf a}^{\bf b} ({\boldsymbol \nabla} V) \cdot d{\bf l} +\] +so +\[ +\int_{\bf a}^{\bf b} ({\boldsymbol \nabla} V) \cdot d{\bf l} = - \int_{\bf a}^{\bf b} {\bf E} \cdot d{\bf l} +\] +Since this is true for any choice of \({\bf a}\) and \({\bf b}\), we have +

+
+

+\[ + {\bf E} = -{\boldsymbol \nabla} V + \label{Gr(2.23)} + \] +

+ +
+

+We can explicitly check \ref{Gr(2.23)} by 'extracting' the \({\boldsymbol \nabla}\) operator from the +integral in the definition of the field in e.g. \ref{Gr(2.4)}: +\[ +{\bf E} ({\bf r}) = \frac{1}{4\pi \varepsilon_0} \sum_{i=1}^n q_i \frac{{\bf r} - {\bf r}_i}{|{\bf r} - {\bf r}_i|^3} += \frac{1}{4\pi \varepsilon_0} \sum_{i=1}^n q_i (-1) {\boldsymbol \nabla} \frac{1}{|{\bf r} - {\bf r}_i|} += - {\boldsymbol \nabla} \frac{1}{4\pi \varepsilon_0} \sum_{i=1}^n \frac{q_i}{|{\bf r} - {\bf r}_i|} += - {\boldsymbol \nabla} V +\] +by using \ref{Gr(1.101)} and \ref{Gr(2.27)}. +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms.html b/build/ems_ms.html new file mode 100644 index 0000000..5025b27 --- /dev/null +++ b/build/ems_ms.html @@ -0,0 +1,1924 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Magnetostatics + + +ems.ms

+ +
+
+ +Prerequisites + +
    +
  • Mathematical Preliminaries
  • +
+
+ +
+ +Objectives + +
    +
  • Know the Lorentz force law
  • +
  • Know the continuity equation
  • +
  • Know the Biot-Savart law
  • +
  • Know the divergence of \({\bf B}\)
  • +
  • Know the curl of \({\bf B}\) (Ampère's law)
  • +
  • Know the relation between \({\bf B}\) and the vector potential \({\bf A}\)
  • +
  • Know the expression for \({\bf A}\) in terms of source current densities
  • +
  • Understand boundary conditions for the magnetic field and vector potential
  • +
  • Understand the multipole expansion of the vector potential
  • +
  • Know the expression for the magnetic dipole moment
  • +
  • Understand the dipole term of the vector potential
  • +
+
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_BS.html b/build/ems_ms_BS.html new file mode 100644 index 0000000..7c40efc --- /dev/null +++ b/build/ems_ms_BS.html @@ -0,0 +1,1905 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Steady Currents: the Biot-Savart Law + + +ems.ms.BS

+ +
+

+Steady currents lead to constant magnetic fields: {\bf magnetostatics}. +

+ +

+Then, since \(\frac{\partial \rho}{\partial t} = 0\), the continuity equation leads to +\[ +{\boldsymbol \nabla} \cdot {\bf J} = 0 +\label{Gr(5.31)} +\] +

+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_BS_sc.html b/build/ems_ms_BS_sc.html new file mode 100644 index 0000000..0f32b49 --- /dev/null +++ b/build/ems_ms_BS_sc.html @@ -0,0 +1,1980 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Magnetic Field issuing from a Steady Current + + +ems.ms.BS.sc
+
+

+This is given experimentally (around 1820) by the +

+
+

+{\bf Biot-Savart law} +\[ + {\bf B} ({\bf r}) = \frac{\mu_0}{4\pi} \int dl' \frac{{\bf I} \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3} + \label{eq:BiotSavart} + \] +

+ +
+

+in which \(\mu_0\) is the vacuum permeability (or alternately permeability of free space, +permeability of vacuum or magnetic constant), +\[ + \mu_0 = 1.25663706212(19)x10^{-6} H/m +\] +with the {\it henry} \(H = kg m^2 / s^2 A^2\) being the unit for inductance. +

+ +

+For surface and volume density currents: +

+
+

+\[ + {\bf B} ({\bf r}) = \frac{\mu_0}{4\pi} \int da' \frac{{\bf K} ({\bf r}') \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3}, + \hspace{2cm} + {\bf B} ({\bf r}) = \frac{\mu_0}{4\pi} \int d\tau' \frac{{\bf J} ({\bf r}') \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3} + \label{Gr(5.39)} + \] +

+ +
+ +

+{\bf N.B.:} there is no Biot-Savart law for a single point charge. Not steady current ! +

+ + +

+The {\bf superposition principle} applies here as well: collection of currents generates a \({\bf B}\) field which is +the vector sum of the fields generated by the individual currents. +

+ +
+

+\paragraph{Example 5.5:} find \({\bf B}\) a distance \(s\) from a long straight wire carrying steady current \(I\). +\paragraph{Solution:} {\bf Gr Fig 5.18}: +\(dl {\bf I} \times ({\bf r} - {\bf r}')\) points out of the page (blackboard !), and has +magnitude \(dl' \sin \alpha = dl' \cos \theta\). But \(l' = s \tan \theta\) so \(dl' = \frac{s}{\cos^2 \theta} d\theta\), +and \(s = |{\bf r} - {\bf r}'| \cos \theta\). Then, +\[ + B = \frac{\mu_0}{4\pi} I \int_{\theta_1}^{\theta_2} d\theta \cos \theta \frac{\cos^2 \theta}{s^2} \frac{s}{\cos^2 \theta} + = \frac{\mu_0 I}{4\pi s} (\sin \theta_2 - \sin \theta_1) + \label{Gr(5.35)} + \] +For infinite wire: \(\theta_1 = -\pi/2\), \(\theta_2 = \pi/2\), so +\[ + B = \frac{\mu_0 I}{2\pi s} + \label{Gr(5.36)} + \] +

+ +
+ +

+Immediate consequence: force per unit length between two wires with currents \(I_1\) and \(I_2\) separated by distance \(d\): +\[ +f = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{d} +\label{Gr(5.37)} +\] +(like currents attract). +

+ +
+

+\paragraph{Example 5.6:} find {\bf B} a distance \(z\) above the center of a circular loop of radius \(R\), +carrying a steady counterclockwise current \(I\). +\paragraph{Solution:} Gr Fig 5.21. By symmetry, only the vertical component doesn't cancel. +\[ + B(z) = \frac{\mu_0 I}{4\pi} \int dl' \frac{\cos \theta}{|{\bf r} - {\bf r}'|} + = \frac{\mu_0 I}{4\pi} \frac{\cos \theta}{R^2 + z^2} \int dl' = \frac{\mu_0 I}{2} \frac{R^2}{(R^2 + z^2)^{3/2}} + \label{Gr(5.38)} + \] +(since \(\cos \theta = R/\sqrt{R^2 + z^2}\)). +

+ +
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_dcB.html b/build/ems_ms_dcB.html new file mode 100644 index 0000000..dc5700b --- /dev/null +++ b/build/ems_ms_dcB.html @@ -0,0 +1,1895 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Divergence and Curl of \({\bf B}\) + + +ems.ms.dcB

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_dcB_BS.html b/build/ems_ms_dcB_BS.html new file mode 100644 index 0000000..3f20e9a --- /dev/null +++ b/build/ems_ms_dcB_BS.html @@ -0,0 +1,2088 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Divergence and Curl of \({\bf B}\) from Biot-Savart + + +ems.ms.dcB.BS
+
+

+\[ +{\bf B} ({\bf r}) = \frac{\mu_0}{4\pi} \int_{\cal V} d\tau' \frac{{\bf J}({\bf r}') \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3} +\label{Gr(5.45)} +\] +Apply the divergence: +\[ +{\boldsymbol \nabla} \cdot {\bf B} ({\bf r}) = \frac{\mu_0}{4\pi} \int_{\cal V} d\tau' {\boldsymbol \nabla} \cdot +\left(\frac{{\bf J}({\bf r}') \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3} \right) +\label{Gr(5.46)} +\] +Note that we can write (using \ref{Gr(1.101)}) \(\frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} = -{\boldsymbol \nabla} \frac{1}{|{\bf r} - {\bf r}'|}\). Substituting this in and using product rule number 6, +\[ +{\boldsymbol \nabla} \cdot ({\bf A} \times {\bf B}) = {\bf B} \cdot ({\boldsymbol \nabla} \times {\bf A}) - {\bf A} \cdot ({\boldsymbol \nabla} \times {\bf B}), +\] +we get +

+\begin{align} +{\boldsymbol \nabla} \cdot \left(\frac{{\bf J}({\bf r}') \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3} \right) +&= -{\boldsymbol \nabla} \cdot \left( {\bf J}({\bf r}') \times {\boldsymbol \nabla} \frac{1}{|{\bf r} - {\bf r}'|} \right) \nonumber \\ +&= -{\boldsymbol \nabla} \frac{1}{|{\bf r} - {\bf r}'|} \cdot \bigl({\boldsymbol \nabla} \times {\bf J} ({\bf r}') \bigr) ++ {\bf J} ({\bf r}') \cdot \left({\boldsymbol \nabla} \times {\boldsymbol \nabla} \frac{1}{|{\bf r} - {\bf r}'|}\right) +\label{Gr(5.47)} +\end{align} +

+But \({\bf J}\) depends only on \({\bf r}'\) so \({\boldsymbol \nabla} \times {\bf J} ({\bf r}') = 0\), and since +the curl of a gradient always vanishes, we obtain +

+
+

+\[ + {\boldsymbol \nabla} \cdot {\bf B} = 0 + \label{eq:DivBisZero} + \] +

+ +
+

+The divergence of a magnetic field is always zero. +Said equivalently: there are no magnetic charges. +

+ +

+We can play the same trick with the curl: +\[ +{\boldsymbol \nabla} \times {\bf B} ({\bf r}) = \frac{\mu_0}{4\pi} \int_{\cal V} d\tau' ~{\boldsymbol \nabla} \times +\left(\frac{{\bf J}({\bf r}') \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3} \right) +\label{Gr(5.49)} +\] +Do as above but now use product rule 8 +\[ +{\boldsymbol \nabla} \times ({\bf A} \times {\bf B}) = ({\bf B} \cdot {\boldsymbol \nabla}) {\bf A} - ({\bf A} \cdot {\boldsymbol \nabla}) {\bf B} + {\bf A} ({\boldsymbol \nabla} \cdot {\bf B}) - {\bf B} ({\boldsymbol \nabla} \cdot {\bf A}) +\] +and (dropping terms involving derivatives of \({\bf J}({\bf r}')\) with respect to \({\bf r}\), +which vanish): +

+\begin{align} +{\boldsymbol \nabla} \times \left(\frac{{\bf J}({\bf r}') \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3} \right) +&= -{\boldsymbol \nabla} \times \left( {\bf J}({\bf r}') \times {\boldsymbol \nabla} \frac{1}{|{\bf r} - {\bf r}'|} \right) \nonumber \\ +&= ({\bf J} ({\bf r}') \cdot {\boldsymbol \nabla}) {\boldsymbol \nabla} \frac{1}{|{\bf r} - {\bf r}'|} +-{\bf J} ({\bf r}') \left({\boldsymbol \nabla} \cdot {\boldsymbol \nabla} \frac{1}{|{\bf r} - {\bf r}'|}\right) +\label{Gr(5.50)} +\end{align} +

+Last term: +\[ +-{\bf J} ({\bf r}') \left({\boldsymbol \nabla} \cdot {\boldsymbol \nabla} \frac{1}{|{\bf r} - {\bf r}'|}\right) += -{\bf J} ({\bf r}') \left({\boldsymbol \nabla}^2 \frac{1}{|{\bf r} - {\bf r}'|}\right) = -{\bf J} ({\bf r}') \left(-4\pi \delta^{(3)} ({\bf r} - {\bf r}') \right) +\label{Gr(5.51)} +\] +where we have used \ref{Gr(1.102)}. This term thus integrates to +\[ +\frac{\mu_0}{4\pi} \int_{\cal V} d\tau' {\bf J} ({\bf r}') 4\pi \delta^{(3)} ({\bf r} - {\bf r}') = \mu_0 {\bf J}({\bf r}). +\] +To treat the other term, we use +\[ +({\bf J} ({\bf r}') \cdot {\boldsymbol \nabla}) {\boldsymbol \nabla} \frac{1}{|{\bf r} - {\bf r}'|} += -({\bf J} ({\bf r}') \cdot {\boldsymbol \nabla}') {\boldsymbol \nabla} \frac{1}{|{\bf r} - {\bf r}'|} +\] +to rewrite the second part of the integral as +\[ +-\frac{\mu_0}{4\pi} {\boldsymbol \nabla} \int_{\cal V} d\tau' ({\bf J} ({\bf r}') \cdot {\boldsymbol \nabla}') \frac{1}{|{\bf r} - {\bf r}'|} += \frac{\mu_0}{4\pi} {\boldsymbol \nabla} \int_{\cal V} d\tau' \frac{{\boldsymbol \nabla}' \cdot {\bf J} ({\bf r}')}{|{\bf r} - {\bf r}'|} += 0 +\] +where in the second step we have used integration by parts using product rule 5 +\[ +{\boldsymbol \nabla} \cdot (f {\bf A}) = f ({\boldsymbol \nabla} \cdot {\bf A}) + {\bf A} \cdot ({\boldsymbol \nabla} f) +\] +(the surface term vanishes because we take \({\bf J} \rightarrow 0\) +at infinity), and in the third step we have used the assumption of steady-state so \({\boldsymbol \nabla}' \cdot {\bf J} = 0\). +

+ +

+We thus obtain in total +

+
+

+Ampère's law + \[ + {\boldsymbol \nabla} \times {\bf B} = \mu_0 {\bf J} + \label{eq:Ampere} + \] +

+ +
+

+(in differential form). Using Stokes' theorem, +\[ +\int_{\cal S} {\boldsymbol \nabla} \times {\bf B} \cdot d{\bf a} = \oint_{\cal P} {\bf B} \cdot d{\bf l} = \mu_0 \int_{\cal S} {\bf J} \cdot d{\bf a} +\] +so +

+
+

+\[ + \oint_{\cal P} {\bf B} \cdot d{\bf l} = \mu_0 I_{enc} \hspace{2cm} + I_{enc} = \int_{\cal S} {\bf J} \cdot d{\bf a}. + \label{Gr(5.55)} + \] +

+ +
+

+where \(I_{enc}\) is the current enclosed in the {\bf amperian loop} \({\cal P}\) which defines the boundary of surface \({\cal S}\). +

+ +

+Sign ambiguity: resolved by right-hand rule as usual. +

+ +

+Ampère's law in magnetostatics takes a parallel role to Gauss's law in electrostatics. +

+ +
+

+\paragraph{Example 5.7:} same as Example 5.5, but now with Ampère. +\paragraph{Solution:} by symmetry, \({\bf B}\) is circumferential and can only depend on \(s\). Then, +choosing an amperian loop at a fixed radius \(s\), we get +\[ + \oint {\bf B} \cdot d{\bf l} = B 2\pi s = \mu_0 I ~~\Rightarrow~~ B = \frac{\mu_0 I}{2\pi s} + \] +

+ +
+ +
+

+\paragraph{Example 5.8:} uniform surface current \({\bf K} = K \hat{\bf x}\) flowing in \(xy\) plane. +\paragraph{Solution:} Biot-Savart: \({\bf B}\) must be perpendicular to \({\bf K}\). Intuition: +\({\bf B}\) cannot have a component along \(\hat{\bf z}\). Right-hand rule: \({\bf B}\) along \(-\hat{\bf y}\) for \(z > 0\), +and along \(\hat{\bf y}\) for \(z < 0\). Amperian loop of width \(l\) punching through surface: +\[ + \oint {\bf B} \cdot d{\bf l} = 2B l = \mu_0 I_{enc} = \mu_0 K l + ~~\Rightarrow~~ + {\bf B} = \left\{ \begin{array}{cc} \frac{\mu_0}{2} K \hat{\bf y}, & z < 0, \\ + -\frac{\mu_0}{2} K \hat{\bf y}, & z > 0. \end{array} \right. + \label{Gr(5.56)} + \] +

+ +
+ +
+

+\paragraph{Example 5.9:} solenoid along \(\hat{\bf z}\), wire carrying current \(I\) doing \(n\) turns per unit length on cylinder of radius \(R\). +\paragraph{Solution:} by symmetry, \({\bf B}\) must be along axis of solenoid. Outside: infinitely far away, \({\bf B}\) must vanish. +But an amperian loop outside gives zero always, so \({\bf B}\) vanishes everywhere outside the solenoid. +Amperian loop of length \(l\), half-inside and half-outside: +\[ + \oint {\bf B} \cdot d{\bf l} = Bl = \mu_0 I_{enc} = \mu_0 I n l ~~\Rightarrow~~ + {\bf B} = \left\{ \begin{array}{cc} \mu_0 I n \hat{\bf z}, & s < R, \\ + 0, & s > R \end{array} \right. + \label{Gr(5.57)} + \] +

+ +
+ +

+\paragraph{Situations where Ampère's law can be useful:} +i) infinite straight lines, ii) infinite planes, iii) infinite solenoids, iv) toroids. +

+ +
+

+\paragraph{Example 5.10:} toroidal coil (no matter the shape, as long as it is rotationally symmetric). +\paragraph{Solution:} magnetic field is circumferential everywhere. Outside coil, field again zero. +Amperian loop half inside, half outside: +\[ + B 2\pi s = \mu_0 I_{enc} ~~\Rightarrow~~ + {\bf B} = \left\{ \begin{array}{cc} \frac{\mu_0 N I}{2\pi s} \hat{\boldsymbol \phi}, & \mbox{inside coil}, \\ + 0, & \mbox{outside} \end{array} \right. + \label{Gr(5.58)} + \] +

+ +
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_dcB_sc.html b/build/ems_ms_dcB_sc.html new file mode 100644 index 0000000..34542df --- /dev/null +++ b/build/ems_ms_dcB_sc.html @@ -0,0 +1,1930 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Straight-line Currents + + +ems.ms.dcB.sc
+
+

+Infinite straight wire: calculate line integral of \({\bf B}\) along circular path of radius \(s\) centered on wire: +from \ref{Gr(5.36)}, +\[ +\oint {\bf B} \cdot d{\bf l} = \oint \frac{\mu_0 I}{2\pi s} dl = \mu_0 I. +\] +Any loop will do: +\[ +{\bf B} = \frac{\mu_0 I}{2\pi s} \hat{\boldsymbol \phi} +\label{Gr(5.41)} +\] +and \(d{\bf l} = ds \hat{\bf s} + s d\phi \hat{\boldsymbol \phi} + dz \hat{\bf z}\) so for a loop encircling the wire once, +\[ +\oint {\bf B} \cdot d{\bf l} = \frac{\mu_0 I}{2\pi} \oint \frac{1}{s} s d\phi = \mu_0 I. +\] +

+ +

+For a general collection of straight wires: +\[ +\oint_{\cal P} {\bf B} \cdot d{\bf l} = \mu_0 I_{enc} +\label{Gr(5.42)} +\] +where \(I_{enc}\) is the current flow through a surface \({\cal S}\) defined by the closed path \({\cal P}\): +\[ +I_{enc} = \int_{\cal S} {\bf J} \cdot d{\bf a} +\label{Gr(5.43)} +\] +Applying Stokes' theorem: +

+
+

+\[ + {\boldsymbol \nabla} \times {\bf B} = \mu_0 {\bf J} + \label{Gr(5.44)} + \] +

+ +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_lf.html b/build/ems_ms_lf.html new file mode 100644 index 0000000..79da1e4 --- /dev/null +++ b/build/ems_ms_lf.html @@ -0,0 +1,1895 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Charges in Motion: the Lorentz Force Law + + +ems.ms.lf

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_lf_c.html b/build/ems_ms_lf_c.html new file mode 100644 index 0000000..1ceb3da --- /dev/null +++ b/build/ems_ms_lf_c.html @@ -0,0 +1,1969 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Currents + + +ems.ms.lf.c
+
+

+Consider a little surface \(\Delta {\cal S}\) having a normal unit vector \(\hat{\bf n}\). +

+ +

+We start by defining a {\bf current density} \({\bf J}\) as the vector representing the amount of +charge flowing through a unit area per unit time. Its direction is along the motion of the charges. +

+ +

+The charge flowing through \(\Delta {\cal S}\) in one unit of time is +thus \(\Delta q = {\bf J} \cdot {\bf n} ~\Delta {\cal S} ~\Delta t\). +

+ +

+Let the flow of charge be given by a charge density \(\rho\) moving at velocity \({\bf v}\). +Then, \(\Delta q = \rho {\bf v} \cdot {\bf n} ~\Delta {\cal S} ~\Delta t\) so we can identify +\[ +{\bf J} = \rho {\bf v} +\label{Gr(5.26)} +\] +The total current \(I\) going through a surface \({\cal S}\) is +\[ +I = \int_{\cal S} {\bf J} \cdot d{\bf a} +\label{Gr(5.28)} +\] +Over a closed surface, we can use the divergence theorem, +\[ +\oint_{\cal S} {\bf J} \cdot d{\bf a} = \int_{\cal V} d\tau {\boldsymbol \nabla} \cdot {\bf J} +\] +Since charge is conserved, +\[ +\int_{\cal V} d\tau {\boldsymbol \nabla} \cdot {\bf J} = -\frac{d}{dt} \int_{\cal V} d\tau \rho += - \int_{\cal V} d\tau \frac{\partial \rho}{\partial t}. +\] +Since this is valid for any volume, we get the +

+
+

+continuity equation +\[ + {\boldsymbol \nabla} \cdot {\bf J} + \frac{\partial \rho}{\partial t} = 0 + \label{eq:continuity} + \] +

+ +
+ +

+Current down a wire: linear charge density \(\lambda\) moving at velocity \({\bf v}\) means current +\[ +{\bf I} = \lambda {\bf v} +\label{Gr(5.14)} +\] +Current on a surface: {\bf surface current density} made up of surface charge density \(\sigma\) +moving at velocity \({\bf v}\) +\[ +{\bf K} = \sigma {\bf v} +\label{Gr(5.23)} +\] +

+ +
+

+Forces on wire, surface and volume carrying current densities: +\[ + {\bf F}_{mag} = \int {\bf v} \times {\bf B} ~\lambda dl = \int |{\bf I}| ~d{\bf l} \times {\bf B} + \label{Gr(5.16)} + \] +\[ + {\bf F}_{mag} = \int {\bf v} \times {\bf B} ~\sigma da = \int {\bf K} \times {\bf B} ~da + \label{Gr(5.24)} + \] +\[ + {\bf F}_{mag} = \int {\bf v} \times {\bf B} ~\rho d\tau = \int {\bf J} \times {\bf B} ~d\tau + \label{Gr(5.27)} + \] +

+ +
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_lf_pc.html b/build/ems_ms_lf_pc.html new file mode 100644 index 0000000..a1d3b7b --- /dev/null +++ b/build/ems_ms_lf_pc.html @@ -0,0 +1,1949 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Point Charge + + +ems.ms.lf.pc
+
+

+Force on a point charge \(q\) moving at velocity \({\bf v}\) in magnetic field \({\bf B}\): +

+
+

+\[ + {\bf F}_{mag} = q {\bf v} \times {\bf B} + \label{eq:LorentzForce} + \] +

+ +
+

+Units of \({\bf B}\): \(N/(A~m)\) is called a {\bf tesla} (symbol: \(T\)). Total electromagnetic force: +

+
+

+\[ + {\bf F}_{mag} = q ({\bf E} + {\bf v} \times {\bf B}) + \label{eq:EMForce} + \] +

+ +
+ +
+

+\paragraph{Example 5.1:} cyclotron motion. Field \({\bf B}\) pointing into page. Charge \(q > 0\) moves +counterclockwise with speed \(v\) on a circle of radius \(R\). Magnetic force points inwards. +Equating, obtain the {\bf cyclotron formula} +\[ + q v B = m \frac{v^2}{R} ~~\rightarrow~~ p = mv = q B R. + \label{Gr(5.3)} + \] +The {\bf cyclotron frequency} is +\[ + \omega = 2\pi \frac{v}{2\pi R} = \frac{q B}{m} + \label{Gr(5.4)} + \] +

+ +
+ +
+

+\paragraph{Example 5.2:} cycloid motion. Recommendation: {\it look at it!!} +

+ +
+ + +

+Important point: {\bf magnetic forces do no work}. Work: +\[ +dW_{mag} = {\bf F}_{mag} \cdot d{\bf l} = q ({\bf v} \times {\bf B}) \times {\bf v} dt = 0 +\label{Gr(5.11)} +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_vp.html b/build/ems_ms_vp.html new file mode 100644 index 0000000..b1006d0 --- /dev/null +++ b/build/ems_ms_vp.html @@ -0,0 +1,2053 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

The Vector Potential + + +ems.ms.vp

+ +
+

+Since \({\boldsymbol \nabla} \cdot {\bf B} = 0\) in magnetostatics, following Helmholtz's theorem we can write +

+
+

+\[ + {\bf B} = {\boldsymbol \nabla} \times {\bf A} + \label{Gr(5.59)} + \] +

+ +
+

+Connection with Ampère's law: +\[ +{\boldsymbol \nabla} \times {\bf B} = {\boldsymbol \nabla} \times ({\boldsymbol \nabla} \times {\bf A} +) = {\boldsymbol \nabla} ({\boldsymbol \nabla} \cdot {\bf A}) - {\boldsymbol \nabla}^2 {\bf A} += \mu_0 {\bf J} +\label{Gr(5.60)} +\] +Electrostatics: you could add any constant to electrostatic potential. Here: you can +add any curlless function (so gradient of a scalar field) to the vector potential, +without changing the magnetic field. This is called a {\bf gauge choice} in electrodynamics. +For example, we can {\bf always} eliminate the divergence of \({\bf A}\), +

+
+

+{\bf Example gauge choice:} +\[ + {\boldsymbol \nabla} \cdot {\bf A} = 0. + \label{Gr(5.61)} + \] +

+ +
+

+Proof: suppose our starting \({\bf A}_0\) is not divergenceless. We add \({\boldsymbol \nabla} \lambda\) +to the vector potential, so \({\bf A} = {\bf A}_0 + {\boldsymbol \nabla} \lambda\). Then, +\[ +{\boldsymbol \nabla} \cdot {\bf A} = {\boldsymbol \nabla} \cdot {\bf A}_0 + {\boldsymbol \nabla}^2 \lambda. +\] +The scalar field then obeys a Poisson-like equation, +\[ +{\boldsymbol \nabla}^2 \lambda = -{\boldsymbol \nabla} \cdot {\bf A}_0, +\] +whose solution we know how to find. Provided \({\boldsymbol \nabla} \cdot {\bf A}_0\) goes to +zero at infinity, +\[ +\lambda ({\bf r}) = \frac{1}{4\pi} \int d\tau' \frac{{\boldsymbol \nabla}' \cdot{\bf A}_0 ({\bf r}')}{|{\bf r} - {\bf r}'|}. +\] +{\it Provide proof in one line using Laplacian leading to delta function.} +

+ +

+Under this gauge choice, Ampère's law becomes +

+
+

+\[ + {\boldsymbol \nabla}^2 {\bf A} = -\mu_0 {\bf J} + \label{Gr(5.62)} + \] +

+ +
+

+Note: this is a Poisson equation for each component. +For currents falling off sufficiently rapidly at infinity, +

+
+

+\[ + {\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} \int d\tau' \frac{J({\bf r}')}{|{\bf r} - {\bf r}'|} + \label{Gr(5.63)} + \] +

+ +
+

+For line and surface currents, (beware Griffiths' horrendous notation) +

+
+

+\[ + {\bf A}({\bf r}) = \frac{\mu_0}{4\pi} \int dl' \frac{{\bf I ({\bf r}')}}{|{\bf r} - {\bf r}'|}, + \hspace{2cm} + {\bf A}({\bf r}) = \frac{\mu_0}{4\pi} \int da' \frac{{\bf K ({\bf r}')}}{|{\bf r} - {\bf r}'|}. + \label{Gr(5.64)} + \] +

+ +
+ + + +
+

+\paragraph{Example 5.11:} a spherical shell of radius \(R\), carrying a uniform surface charge +\(\sigma\), is set spinning at angular velocity \(\omega\). Find the vector potential at \({\bf r}\). +\paragraph{Solution:} do it by yourselves. Fun conclusion: the field inside +the sphere is uniform ! +\[ + {\bf B} = \frac{2}{3} \mu_0 \sigma R {\boldsymbol \omega}. + \label{Gr(5.68)} + \] +

+ +
+ +
+

+\paragraph{Example 5.12:} find the vector potential of an infinite solenoid with \(n\) turns +pet unit length, radius \(R\) and current \(I\). +\paragraph{Solution:} cannot use \ref{Gr(5.64)} since the current extends to infinity +({\bf Comment:} check that the integral converges anyway, by combining the integrals +for \(z > 0\) and \(z < 0\) into one). +

+ +

+{\bf Nice trick:} notice that +\[ + \oint {\bf A} \cdot d{\bf l} = \int ({\boldsymbol \nabla} \times {\bf A}) \cdot d{\bf a} + = \int {\bf B} \cdot d{\bf a} = \Phi. + \label{Gr(5.69)} + \] +This is reminiscent of Ampère's law in integral form, \ref{Gr(5.55)}, +\[ + \oint {\bf B} \cdot d{\bf l} = \mu_0 I_{enc}. + \] +It's the same equation ! Replacement: \({\bf B} \rightarrow {\bf A}\) and \(\mu_0 I_{enc} \rightarrow \Phi\). +And to paraphrase Feynman's lectures: {\it the same equations have the same solutions.} +

+ +

+Use symmetry: vector potential can only be cicumferential. Using an 'amperian' loop at a radius +\(s\) {\it inside} the solenoid, and the fact that the field inside a solenoid is \(\mu_0 n I\) +(\ref{Gr(5.57)}), we get +\[ + \oint {\bf A} \cdot d{\bf l} = A (2\pi s) = \int {\bf B} \cdot d{\bf a} = \mu_0 n I (\pi s^2), + \] +so +\[ + {\bf A} = \frac{\mu_0 n I}{2} s \hat{\boldsymbol \phi}, \hspace{1cm} s < R. + \label{Gr(5.70)} + \] +For an 'amperian' loop outside, the flux is always \(\mu_0 n I (\pi R^2)\), so +\[ + {\bf A} = \frac{\mu_0 n I}{2} \frac{R^2}{s} \hat{\boldsymbol \phi}, \hspace{1cm} s > R. + \label{Gr(5.71)} + \] +\paragraph{Exercise:} check that \({\boldsymbol \nabla} \times {\bf A} = {\bf B}\) and that +\({\boldsymbol \nabla} \cdot {\bf A} = 0\). +

+ +
+
+ + + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_vp_LC.html b/build/ems_ms_vp_LC.html new file mode 100644 index 0000000..43a2a19 --- /dev/null +++ b/build/ems_ms_vp_LC.html @@ -0,0 +1,1958 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Levi-Civita Symbol + + +ems.ms.vp.LC
+
+

+\paragraph{Problem 5.33:} similarly to the electrostatic dipole, +the magnetic field of a dipole can be written in coordinate-free form. +For this: we define a useful object, the
+

+
+

+{\bf Levi-Civita symbol} +\[ + \epsilon_{ijk} = \left\{ \begin{array} {cc} + 1, & i,j,k ~\mbox{even permutation of }~ x, y, z \\ + -1, & i,j,k ~\mbox{odd permutation of }~ x, y, z \\ + 0, & ~\mbox{otherwise}. \end{array} \right. + \label{LeviCivita} + \] +

+ +
+

+Using this: we can for example rewrite the cross product as +\[ +({\bf A} \times {\bf B})_i = \epsilon_{ijk} A_j B_k. +\] +Important identity: +\[ +\boxed{ +\epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl} +} +\label{sumLeviCivita} +\] +The curl of a vector is thus +\[ +({\boldsymbol \nabla} \times {\bf A})_i = \epsilon_{ijk} \partial_j A_k. +\] +

+ +

+We can now easily do problem 5.33 (we write the dipole moment \(m\) as \(M\) to make notation clear) +\[ +(B_{di})_i = \epsilon_{ijk} \partial_j \left( \frac{\mu_0}{4\pi} \frac{{\bf M} \times {\bf r}}{r^3} \right)_k += \frac{\mu_0}{4\pi} \epsilon_{ijk} \partial_j \left( \epsilon_{klm} M_l \frac{r_m}{r^3} \right) += \frac{\mu_0}{4\pi} \epsilon_{ijk} \epsilon_{klm} M_l \partial_j \frac{r_m}{r^3} +\] +But +\[ +\partial_j \frac{r_m}{r^3} = \partial_j \frac{r_m}{[\sum_l r_l^2]^{3/2}} = \frac{\delta_{jm}}{r^3} - 3 \frac{r_j r_m}{r^5} +\] +and \(\epsilon_{ijk} \epsilon_{klm} = \epsilon_{ijk} \epsilon_{lmk} = \delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}\), so we get +

+\begin{align} +({\bf B}_{di})_i &= \frac{\mu_0}{4\pi} (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) M_l \left(\frac{\delta_{jm}}{r^3} - 3 \frac{r_j r_m}{r^5}\right) +\nonumber \\ +&= \frac{\mu_0}{4\pi} \left( \frac{M_i}{r^3} (3 - 3) - M_j (\frac{\delta_{ij}}{r^3} - 3 \frac{r_i r_j}{r^5}) \right) \nonumber \\ +&= \frac{\mu_0}{4\pi} \left( 3 \frac{ r_i (M_j r_j)}{r^5} - \frac{M_i}{r^3} \right) +\end{align} +

+Putting back the vector notation, and the \(m\) notation for the magnetic dipole (instead of \(M\)), we obtain +\[ +\boxed{ +{\bf B}_{di} ({\bf r}) = \frac{\mu_0}{4\pi} \frac{1}{r^3} [3({\bf m} \cdot \hat{\bf r}) \hat{\bf r} - {\bf m}] +} +\label{Gr(5.87)} +\] +

+ + +

+\paragraph{Exercise:} rederive all derivative and product rules using Levi-Civita. +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_vp_comp.html b/build/ems_ms_vp_comp.html new file mode 100644 index 0000000..2035d5c --- /dev/null +++ b/build/ems_ms_vp_comp.html @@ -0,0 +1,1903 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Comparison of Electrostatics and Magnetostatics + + +ems.ms.vp.comp
+
+\begin{tabular}{ll} + \mbox{Electrostatics:} \hspace{10mm}& + $\begin{array}{ll} + {\boldsymbol \nabla} \cdot {\bf E} = \frac{\rho}{\varepsilon_0} \hspace{5mm} & \mbox{Gauss's law} \\ + {\boldsymbol \nabla} \times {\bf E} = 0 & \mbox{[nameless]} + \end{array}$ \\ \\ + \mbox{Magnetostatics:} & + $\begin{array}{ll} + {\boldsymbol \nabla} \cdot {\bf B} = 0 & \mbox{[nameless]} \\ + {\boldsymbol \nabla} \times {\bf B} = \mu_0 {\bf J} & \mbox{Ampère's law} + \end{array}$ \\ \\ +\end{tabular} +
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_vp_mbc.html b/build/ems_ms_vp_mbc.html new file mode 100644 index 0000000..7d41c11 --- /dev/null +++ b/build/ems_ms_vp_mbc.html @@ -0,0 +1,1982 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Magnetic Boundary Conditions + + +ems.ms.vp.mbc
+
+

+Electrostatic fields: discontinuous at location of suface charge.
+Magnetostatic fields: discontinuous at location of surface current. +

+ +

+Equation \ref{eq:DivBisZero}: \(\oint {\bf B} \cdot d{\bf a} = 0\) applied to wafer-thin +pillbox straddling surface: normal component +\[ +B^{\perp}_{above} = B^{\perp}_{below}. +\label{Gr(5.72)} +\] +Tangential component: amperian loop of side length \(l\) perpendicular to surface current: +\[ +\oint {\bf B} \cdot d{\bf l} = (B^{\parallel}_{above} - B^{\parallel}_{below}) l = \mu_0 I_{enc} = \mu_0 K l, +\] +and therefore +\[ +B^{\parallel}_{above} - B^{\parallel}_{below} = \mu_0 K +\label{Gr(5.73)} +\] +So: component of \({\bf B}\) that is parallel to surface but perpendicular to current flow +is discontinuous, whereas the one parallel to the flow is continuous. In vector notation: +

+
+

+\[ + {\bf B}_{above} - {\bf B}_{below} = \mu_0 {\bf K} \times \hat{\bf n}, + \label{Gr(5.74)} + \] +

+ +
+

+where \(\hat{\bf n}\) points upwards. For the vector potential, the relations are +

+
+

+\[ + {\bf A}_{above} = {\bf A}_{below} + \label{Gr(5.75)} + \] +

+ +
+

+This can be seen first from the condition \({\boldsymbol \nabla} \cdot {\bf A} = 0\), which +guarantees that the normal component is continuous. Second, \({\boldsymbol \nabla} \times {\bf A} = {\bf B}\) +leads to +\[ +\oint {\bf A} \cdot d{\bf l} = \int {\bf B} \cdot d{\bf a} = \Phi, +\] +where the loop is vanishingly small and straddles the surface. Since the flux then goes to zero, +the tangential components of \({\bf A}\) are also continuous. +

+ +

+However, the derivative of \({\bf A}\) inherits the discontinuity of \({\bf B}\): explicitly, +

+\begin{align} +{\bf B}_{above} - {\bf B}_{below} &= {\boldsymbol \nabla} \times {\bf A}_{above} - {\boldsymbol \nabla} \times {\bf A}_{below} +\nonumber \\ +&= \left| \begin{array}{ccc} \hat{\bf x} & \hat{\bf y} & \hat{\bf z} \\ \partial_x & \partial_y & \partial_z \\ +A_{x, above} & A_{y, above} & A_{z, above} \end{array} \right| - +\left| \begin{array}{ccc} \hat{\bf x} & \hat{\bf y} & \hat{\bf z} \\ \partial_x & \partial_y & \partial_z \\ +A_{x, below} & A_{y, below} & A_{z, below} \end{array} \right| +\end{align} +

+We put the normal direction along \(\hat{\bf z}\) and the current along \(\hat{\bf x}\). +Since the normal component is continuous, \(\partial_{x,y} A_z\) is the same above and below, and we can +drop these terms. +The \(\hat{\bf z}\) term vanishes since it just involves the difference of \(B^{\perp}\), which is the same above and below. +Similary, the \(\hat{\bf x}\) term is the magnetic field parallel to the surface current, which also isn't discontinuous. +What is left is +\[ +%\hat{\bf x} (-\partial_z A_{y,above} + \partial_z A_{y, below}) + +\hat{\bf y} (\partial_z A_{x, above} - \partial_z A_{x, below}) +%+ \hat{\bf z} (\partial_x A_{y, above} - \partial_x A_{y below} - \partial_y A_{x, above} + \partial_y A_{x, below}) += \mu_0 K \hat{\bf x} +\] +Therefore, reidentifying the normal component, we get +

+
+

+\[ + \frac{\partial {\bf A}_{above}}{\partial n} - \frac{\partial {\bf A}_{below}}{\partial n} + = -\mu_0 {\bf K} + \label{Gr(5.76)} + \] +

+ +
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/ems_ms_vp_me.html b/build/ems_ms_vp_me.html new file mode 100644 index 0000000..ced84b2 --- /dev/null +++ b/build/ems_ms_vp_me.html @@ -0,0 +1,2038 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Multipole Expansion of the Vector Potential + + +ems.ms.vp.me
+
+

+Remember our expansion for the electrostatic field (\ref{Gr(3.94)}) +\[ +\frac{1}{|{\bf r} - {\bf r}'|} = \frac{1}{[r^2 + (r')^2 - 2r r' \cos \theta']^{1/2}} += \frac{1}{r} \sum_{l=0}^{\infty} \left(\frac{r'}{r}\right)^l P_l (\cos \theta'). +\label{Gr(5.77)} +\] +The expansion for the vector potential for a current loop carrying current \(I\) over path \({\cal P}\) +can thus be written +\[ +{\bf A} ({\bf r}) = \frac{\mu_0 I}{4\pi} \sum_{l=0}^{\infty} \frac{1}{r^{l+1}} \oint_{\cal P} d{\bf l}' +(r')^l P_l (\cos \theta') +\label{Gr(5.78)} +\] +or (in my notations) +\[ +{\bf A} ({\bf r}) = \frac{\mu_0 I}{4\pi} \sum_{l=0}^{\infty} \frac{1}{|{\bf r}|^{l+1}} +\oint_{\cal P} d{\bf l}_s |{\bf r}_s|^l P_l (\hat{\bf r} \cdot \hat{\bf r}_s) \rho({\bf r}_s), +\hspace{1cm} |{\bf r}| > |{\bf r}_s| ~\forall~ {\bf r}_s \in {\cal P}. +\] +Explicitly, the first few terms are +\[ +{\bf A}({\bf r}) = \frac{\mu_0 I}{4\pi} \left[ \frac{1}{r} \oint\cal P d{\bf l}' +

+
    +
  • \frac{1}{r^2} \oint d{\bf l}' r' cos θ'
  • +
  • \frac{1}{r^3} \oint d{\bf l}' (r')2 \left( \frac{3}{2} cos2 θ' - \frac{1}{2} \right) + … \right]
  • +
+

+\label{Gr(5.79)} +\] +Again, these are known as the {\bf monopole}, {\bf dipole}, {\bf quadrupole} terms. +

+ +

+{\bf Note:} {\bf the magnetic monopole term always vanishes.} This is simply because the total vector +displacement on a closed loop is zero, \(\oint d{\bf l}' = 0\), or in other words: there are no magnetic +monopoles (also from Maxwell's equation \({\boldsymbol \nabla} \cdot {\bf B} = 0\)). +

+ +

+The dominant term is thus the dipole, +\[ +{\bf A}_{di} ({\bf r}) = \frac{\mu_0 I}{4\pi} \frac{1}{r^2} \oint d{\bf l}' (\hat{\bf r} \cdot {\bf r}') +\label{Gr(5.81)} +\] +Using equation \ref{Gr(1.108)} from Problem 1.61, +\[ +\oint_{\cal P} ({\bf c} \cdot {\bf r}) d{\bf l} = {\bf a} \times {\bf c}, \hspace{1cm} +{\bf a} = \int_{\cal S} d{\bf a} +\label{Gr(1.108)} +\] +with \({\bf c} = \hat {\bf r}\), +

+ +
+

+\paragraph{Parenthesis: Problem 1.61 (e)} Start from Stokes' theorem, +\[ + \int_{\cal S} {\boldsymbol \nabla} \times {\bf V} \cdot d{\bf a} = \oint_{\cal P} {\bf V} \cdot d{\bf l} + \] +Let \({\bf V} = {\bf c} T\), where \({\bf c}\) is constant. +On the left-hand side: +\[ + LHS = \int_{\cal S} T ({\boldsymbol \nabla} \times c) \cdot d{\bf a} - \int_{\cal S} {\bf c} \times ({\boldsymbol \nabla} T) \cdot d{\bf a} + \] +The first term is zero since \({\bf c}\) is constant. For the second term: use vector identity nr 1, +\(({\bf c} \times ({\boldsymbol \nabla} T)) \cdot d{\bf a} = {\bf c} \cdot ({\boldsymbol \nabla}T \times d{\bf a})\). The second +term thus becomes +\[ +

+
    +
  • \cal S {\bf c} × ({\boldsymbol ∇} T) ⋅ d{\bf a} = -{\bf c} ⋅ ∫\cal S {\boldsymbol ∇}T × d{\bf a}
  • +
+

+\] +Treating the right-hand side of the original equation now, +\[ + RHS = {\bf c} \cdot \oint_{\cal P} T d{\bf l} + \] +so we get (since this is valid for any \({\bf c}\)) +\[ + \int_{\cal S} {\boldsymbol \nabla} T \times d{\bf a} = -\oint_{\cal P} T d{\bf l}. + \] +Now put \(T = {\bf c} \cdot {\bf r}\) in this: conclusion is \ref{Gr(1.108)}. +

+ +
+ +

+Back to our problem: +\[ +\oint d{\bf l}' (\hat{\bf r} \cdot {\bf r}') = -\hat{\bf r} \times \int_{\cal S} d{\bf a}' +\label{Gr(5.82)} +\] +and defining the +

+
+

+magnetic dipole moment + \[ + {\bf m} \equiv I \int_{\cal S} d{\bf a} = I {\bf a} + \label{Gr(5.84)} + \] +

+ +
+

+we obtain the convenient expression for the +

+
+

+{\bf dipole term of the vector potential} +\[ + {\bf A}_{di} ({\bf r}) = \frac{\mu_0}{4\pi} \frac{{\bf m} \times \hat{\bf r}}{r^2} + \label{Gr(5.83)} + \] +

+ +
+ +
+

+\paragraph{Example 5.13:} find magnetic dipole moment of bookend shape of Gr. Fig. 5.52. +All sides have length \(w\) and carry current \(I\). +\paragraph{Solution:} combine two loops, use \ref{Gr(5.83)} +\[ + {\bf m} = I w^2 \hat{\bf y} + I w^2 \hat{\bf z} + \] +

+ +
+ +

+{\bf Note:} {\it the magnetic dipole moment is independent of the choice of origin.} +

+ +

+{\bf Note:} does there exist a {\it pure magnetic dipole} ? Well, yes, but it's an +infinitely small loop carrying an infinitely large current, so that the dipole term +is finite. +

+ +

+In practice: dipole approximation often good enough when far away from source on a +scale of the source's current loops. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm.html b/build/emsm.html new file mode 100644 index 0000000..b0bb351 --- /dev/null +++ b/build/emsm.html @@ -0,0 +1,1921 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electromagnetostatics in matter + + +emsm

+ +
+
+ +Prerequisites + +
    +
  • Electrostatics
  • +
  • Methods for Calculating or Approximating the Potential
  • +
+
+ +
+ +Objectives + +
    +
  • Understand the concept of polarization
  • +
  • Understand the concept of a dielectric
  • +
  • Understand the concepts of free and bound charges
  • +
  • Understand the concept of the electric displacement
  • +
  • Understand the concept of linear dielectrics
  • +
  • Know how to solve boundary value problems in the presence of dielectrics
  • +
  • Know how to calculate the energy in dielectric systems
  • +
  • Know how to calculate forces in dielectric systems
  • +
+
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_esm.html b/build/emsm_esm.html new file mode 100644 index 0000000..f9826da --- /dev/null +++ b/build/emsm_esm.html @@ -0,0 +1,1898 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Electrostatics in matter + + +emsm.esm

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_esm_D.html b/build/emsm_esm_D.html new file mode 100644 index 0000000..d82b1ae --- /dev/null +++ b/build/emsm_esm_D.html @@ -0,0 +1,1999 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

The Electric Displacement + + +emsm.esm.D

+ +
+

+Field due to polarization: effectively comes from bound surface and volume charges, +

+
+

+\[ + \rho_b = -{\boldsymbol \nabla} \cdot {\bf P}, \hspace{1cm} \sigma_b = {\bf P} \cdot \hat{\bf n}. + \] +

+ +
+

+Rest of charges: {\bf free charge} (electrons in conductors, ions embedded in dielectric, +{\it i.e.} any charge which doesn't come from polarization). +

+ +

+Within dielectric: +\[ +\rho = \rho_b + \rho_f +\label{Gr(4.20)} +\] +Gauss's law: +\[ +\varepsilon_0 {\boldsymbol \nabla} \cdot {\bf E} = \rho = \rho_b + \rho_f = -{\boldsymbol \nabla} \cdot {\bf P} + \rho_f. +\] +Convenient way of writing: +\[ +{\boldsymbol \nabla} \cdot (\varepsilon_0 {\bf E} + {\bf P}) = \rho_f. +\] +Defining the +

+
+

+Electric displacement \({\bf D}\) + \[ + {\bf D} \equiv \varepsilon_0 {\bf E} + {\bf P} + \label{Gr(4.21)} + \] +

+ +
+

+Gauss's law becomes +

+
+

+\[ + {\boldsymbol \nabla} \cdot {\bf D} = \rho_f + \label{Gr(4.22)} + \] +

+ +
+

+or in integral form +

+
+

+\[ + \oint d{\bf a} \cdot {\bf D} = Q_{f_{enc}} + \label{Gr(4.23)} + \] +

+ +
+ +
+

+\paragraph{Example 4.4:} long straight wire, uniform line charge \(\lambda\), surrounded by rubber insulation +to radius \(a\). Find \({\bf D}\). +\paragraph{Solution:} cylindrical Gaussian surface, radius \(s\) and length \(L\). Applying \ref{Gr(4.23)}, +\[ + D 2\pi s L = \lambda L, + \] +so +\[ + {\bf D} = \frac{\lambda}{2\pi s} \hat{\bf s} + \label{Gr(4.24)} + \] +This holds within insulation and outside of it. Outside, \({\bf P} = 0\) so +\[ + {\bf E} = \frac{1}{\varepsilon_0} {\bf D} = \frac{\lambda}{2\pi \varepsilon_0 s} \hat{\bf s}, + \hspace{1cm} s > a. + \] +Inside: can't know the electric field, since \({\bf P}\) isn't known. +

+ +
+ + +

+\paragraph{Note of caution:} while \ref{Gr(4.23)} might lead you to think that +\[ +{\bf D} ({\bf r}) = \frac{1}{4\pi} \int_{\cal V} d\tau' \rho_f ({\bf r}') \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} +\] +but this is {\bf not} correct. In particular, the curl of the displacement isn't always zero, +\[ +{\boldsymbol \nabla} \times {\bf D} = \varepsilon_0 ({\boldsymbol \nabla} \times {\bf E} + {\boldsymbol \nabla} \times {\bf P}) + = {\boldsymbol \nabla} \times {\bf P} +\label{Gr(4.25)} +\] +There is not 'potential' for \({\bf D}\). +

+
+ + + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_esm_D_bc.html b/build/emsm_esm_D_bc.html new file mode 100644 index 0000000..21d7276 --- /dev/null +++ b/build/emsm_esm_D_bc.html @@ -0,0 +1,1906 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Boundary Conditions + + +emsm.esm.D.bc
+
+

+From \ref{Gr(4.23)}: +\[ +D^{\perp}_{above} - D^{\perp}_{below} = \sigma_f +\label{Gr(4.26)} +\] +Then, \ref{Gr(4.25)} give +

+
+

+\[ + {\bf D}^{\parallel}_{above} - {\bf D}^{\parallel}_{below} = {\bf P}^{\parallel}_{above} - {\bf P}^{\parallel}_{below}. + \label{Gr(4.27)} + \] +

+ +
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_esm_d.html b/build/emsm_esm_d.html new file mode 100644 index 0000000..6613aee --- /dev/null +++ b/build/emsm_esm_d.html @@ -0,0 +1,1923 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Dielectrics + + +emsm.esm.d

+
+

+Let's quickly pause to give a classification of the types of responses that might be expected from +materials. +\subsubsection*{Permanent polarization:} here, \({\bf P} \neq 0\) even if \({\bf E} = 0\). +These are the {\bf electrets}. +

+ +

+\subsubsection*{Nonlinear dielectrics:} +\[ +P_i = \sum_j \alpha_{ij} E_j + \sum_{jk} \beta_{ijkl} E_j E_k E_l + ... +\] +(even-order terms usually absent, but could be there in principle). +\subsubsection*{Linear dielectrics:} only linear term is there. Most general: +\[ +P_i = \varepsilon_0 \chi_{ij} E_j +\label{Gr(4.38)} +\] +where \({\bf \chi}\) is the {\bf electric susceptibility tensor} (it's a tensor of rank 2), +which cannot depend on \({\bf E}\) (otherwise we go back to the nonlinear case). +Common in crystals, leading to for example double refraction. +\subsubsection*{Linear isotropic dielectrics:} at a given point, the electrical properties of +the dielectric are independent of the direction of \({\bf E}\) (isotropy). Liquids fall into +this category. We here have +

+
+

+\[ + {\bf P} = \varepsilon_0 \chi_e {\bf E} + \] +

+ +
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_esm_di.html b/build/emsm_esm_di.html new file mode 100644 index 0000000..f840ebf --- /dev/null +++ b/build/emsm_esm_di.html @@ -0,0 +1,1894 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Dielectrics + + +emsm.esm.di

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_esm_di_ld.html b/build/emsm_esm_di_ld.html new file mode 100644 index 0000000..50d9879 --- /dev/null +++ b/build/emsm_esm_di_ld.html @@ -0,0 +1,2324 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Linear Dielectrics + + +emsm.esm.di.ld
+
+
+ +
+
Susceptibility, Permittivity, Dielectric Constant
+
+

+For many substances: polarization is proportional to field, if the latter isn't too strong: +

+
+

+\[ + {\bf P} = \varepsilon_0 \chi_e {\bf E} + \label{Gr(4.30)} + \] +

+ +
+

+Constant \(\chi_e\): called the {\bf electric susceptibility} of the medium. Since \(\varepsilon_0\) is +there, \(\chi_e\) is dimensionless. Materials that obey \ref{Gr(4.30)} are called +{\bf linear dielectrics}. +

+ +

+\paragraph{Note:} \({\bf E}\) on the RHS of \ref{Gr(4.30)} is the {\bf total} electric field, +due to free charges and to the polarization itself. Putting dielectric in field \({\bf E}_0\), +we can't compute \({\bf P}\) directly from \ref{Gr(4.30)}. Better way: compute \({\bf D}\). +

+ +

+In linear dielectrics: +\[ +{\bf D} = \varepsilon_0 {\bf E} + {\bf P} = \varepsilon_0 {\bf E} + \varepsilon_0 \chi_e {\bf E} += \varepsilon_0 (1 + \chi_e) {\bf E} +\label{Gr(4.31)} +\] +so +

+
+

+\[ + {\bf D} = \varepsilon {\bf E} + \label{Gr(4.32)} + \] +

+ +
+

+where \(\varepsilon\) is called the {\bf permittivity} of the material. In vacuum, susceptibility is zero, +permittivity is \(\varepsilon_0\). Also, +\[ +\varepsilon_r \equiv 1 + \chi_e = \frac{\varepsilon}{\varepsilon_0} +\label{Gr(4.34)} +\] +is called the {\bf relative permittivity} or {\bf dielectric constant} of the material. +This is all just nomenclature, everything is already in \ref{Gr(4.30)}. +

+ + + +
+

+\paragraph{Example 4.5:} metal sphere of radius \(a\) carrying charge \(Q\), surrounded out to radius \(b\) by +a linear dielectric material of permittivity \(\varepsilon\). Find potential at center (relative to infinity). +\paragraph{Solution:} need to know \({\bf E}\). Could try to locate bound charge: but we don't know \({\bf P}\) ! +What we do know: free charge, situation is spherically symmetric, so can calculate \({\bf D}\) +using \ref{Gr(4.23)}: +\[ + {\bf D} = \frac{Q}{4\pi r^2} \hat{\bf r}, \hspace{1cm} r > a. + \] +Inside sphere, \({\bf E} = {\bf P} = {\bf D} = 0\). Find \({\bf E}\) using \ref{Gr(4.32)}: +\[ + {\bf E} = \left\{ \begin{array}{cc} + \frac{Q}{4\pi \varepsilon r^2} \hat{\bf r}, & a < r < b, \\ + \frac{Q}{4\pi \varepsilon_0 r^2} \hat{\bf r}, & r > b. \end{array} \right. + \] +The potential is thus +\[ + V = -\int_\infty^0 d{\bf l} \cdot {\bf E} = -\int_\infty^b dr \frac{Q}{4\pi\varepsilon_0 r^2} - \int_b^a dr \frac{Q}{4\pi\varepsilon r^2} + = \frac{Q}{4\pi} \left( \frac{1}{\varepsilon_0 b} + \frac{1}{\varepsilon a} - \frac{1}{\varepsilon b} \right). + \] +

+ +

+It was thus not necessary to compute the polarization or the bound charge explicitly. This can be done: +\[ + {\bf P} = \varepsilon_0 \chi_e {\bf E} = \frac{\varepsilon_0 \chi_e Q}{4\pi \varepsilon r^2} \hat{\bf r}, + \] +so +\[ + \rho_b = -{\boldsymbol \nabla} \cdot {\bf P} = 0, \hspace{1cm} + \sigma_b = {\bf P} \cdot \hat{\bf n} = \left\{ \begin{array}{cc} + \frac{\varepsilon_0 \chi_e Q}{4\pi \varepsilon b^2}, & \mbox{outer surface} \\ + -\frac{\varepsilon_0 \chi_e Q}{4\pi \varepsilon a^2}, & \mbox{inner surface} \end{array} \right. + \] +

+ +

+Dielectric thus like an imperfect conductor: charge \(Q\) not fully screened. +

+ +
+ + +

+In linear dielectrics, the parallel between \({\bf E}\) and \({\bf D}\) is also not perfect. +Remark: since \({\bf P}\) and \({\bf D}\) are both proportional to \({\bf E}\) inside the dielectric, +does it mean that their curl vanishes like for \({\bf E}\) ? {\bf No}: if there is a boundary +between two materials with different dielectric constants, then a closed loop integral +of {\it e.g.} \({\bf P}\) would not vanish. +

+ +

+Only case where parallel works: space entirely filled with homogeneous linear dielectric. +

+ +
+

+\paragraph{Example 4.6:} parallel-plate capacitor filled with insulating material of +dielectric constant \(\varepsilon_r\). What is the effect on the capacitance ? +\paragraph{Solution:} field confined between plates, and reduced by factor \(1/\varepsilon_r\). +Potential difference \(V\) also reduced by same factor. Since \(Q = C/V\), capacitance +is increased by factor of \(\varepsilon_r\), so +\[ + C = \varepsilon_r C_{vac} + \label{Gr(4.37)} + \] +

+ +
+
+
+ + + +
+
Boundary Value Problems with Linear Dielectrics
+
+

+In homogeneous linear dielectric: +\[ +\rho_b = -{\boldsymbol \nabla} \cdot {\bf P} = - {\boldsymbol \nabla} \cdot \left(\varepsilon_0 \frac{\chi_e}{\varepsilon} {\bf D}\right) += -\left( \frac{\chi_e}{1 + \chi_e} \right) \rho_f +\label{Gr(4.39)} +\] +If \(\rho = 0\), any net charge is on surface, potential then obeys Laplace. +

+ +

+Convenient to rewrite boundary conditions in terms of free charge: from \ref{Gr(4.26)}, +

+
+

+\[ + \varepsilon_{above} E^{\perp}_{above} - \varepsilon_{below} E^{\perp}_{below} = \sigma_f + \label{Gr(4.40)} + \] +

+ +
+

+or in terms of the potential, +

+
+

+\[ + \varepsilon_{above} \frac{\partial V_{above}}{\partial n} - + \varepsilon_{below} \frac{\partial V_{below}}{\partial n} = -\sigma_f + \label{Gr(4.41)} + \] +

+ +
+

+Potential itself is continuous, +

+
+

+\[ + V_{above} = V_{below} + \label{Gr(4.42)} + \] +

+ +
+ + + +
+

+\paragraph{Example 4.7:} sphere of homogeneous dielectric material in uniform electric field \({\bf E}_0\). +Find electric field inside sphere. +\paragraph{Solution:} resembles Example 3.8 (conducting sphere), here cancellation is not total. +

+ +

+Need to solve Laplace's equation for \(V(r, \theta)\) with boundary conditions +

+\begin{align} + &(i)~~V_{in} (R,\theta) = V_{out} (R, \theta), \nonumber \\ + &(ii)~~\varepsilon \frac{\partial V_{in} (R,\theta)}{\partial n} + = \varepsilon_0 \frac{\partial V_{out} (R,\theta)}{\partial n}, \nonumber \\ + &(iii)~~V_{out} (r) \rightarrow -E_0 r \cos \theta, ~~r \gg R. +\end{align} +

+Inside and outside sphere: +\[ + V_{in} (r,\theta) = \sum_{l=0}^\infty A_l r^l P_l (\cos \theta), \hspace{1cm} + V_{out} (r,\theta) = -E_0 r \cos \theta + \sum_{l=0}^\infty \frac{B_l}{r^{l+1}} P_l (\cos \theta). + \] +Boundary condition \((i)\) imposes +\[ + \sum_{l=0}^\infty A_l R^l P_l(\cos \theta) = -E_0 R \cos \theta + \sum_{l=0}^\infty \frac{B_l}{R^{l+1}} P_l (\cos \theta) + \] +so +\[ + A_l R^l = \frac{B_l}{R^{l+1}}, ~~ l \neq 1, \hspace{1cm} + A_1 R = -E_0 R + \frac{B_1}{R^2}. + \] +Boundary condition \((ii)\): +\[ + \varepsilon_r \sum_{l=0}^\infty l A_l R^{l-1} P_l (\cos \theta) = - E_0 \cos \theta - \sum_{l=0}^\infty \frac{(l+1)B_l}{R^{l+2}} P_l (\cos \theta) + \] +so +\[ + \varepsilon_r l A_l R^{l-1} = -\frac{(l+1)B_l}{R^{l+2}}, ~~ l \neq 1, \hspace{1cm} + \varepsilon_r A_1 = -E_0 - \frac{2B_1}{R^3}. + \] +We then have +\[ + A_l = 0 = B_l, ~~ l \neq 1, \hspace{1cm} + A_l = -\frac{3}{\varepsilon_r + 2} E_0, ~~ B_1 = \frac{\varepsilon_r - 1}{\varepsilon_r + 2} R^3 E_0. + \] +Thus, +\[ + V_{in} (r, \theta) = -\frac{3E_0}{\varepsilon_r + 2} r \cos \theta = -\frac{3E_0}{\varepsilon_r + 2} z, + \hspace{1cm} + {\bf E} = \frac{3}{\varepsilon_r + 2} {\bf E}_0. + \] +

+ +
+ + + + +
+

+\paragraph{Example 4.8:} suppose region below \(z = 0\) is filled with uniform linear dielectric with susceptibility \(\chi_e\). +Calculate force on point charge \(q\) situated a distance \(d\) above origin. +\paragraph{Solution:} bound surface charge is of opposite sign, force is attractive. No bound volume charge +because of \ref{Gr(4.39)}. Using \ref{Gr(4.11)} and \ref{Gr(4.30)}, +\[ + \sigma_b = {\bf P} \cdot \hat{\bf n} = P_z = \varepsilon_0 \chi_e E_z + \] +where \(E_z\) is the z-component of total field just below surface of dielectric (due to \(q\) and to bound charge). +Contribution from charge \(q\) from Coulomb (careful: \(\theta\) is $π$-rotated as compared to spherical coord so \(\theta = 0\) represents \(-\hat{z}\)) +\[ + -\frac{1}{4\pi\varepsilon_0} \frac{q}{r^2 + d^2} \cos \theta = -\frac{1}{4\pi\varepsilon_0} \frac{qd}{(r^2 + d^2)^{3/2}}, \hspace{1cm} + r = \sqrt{x^2 + y^2}. + \] +$z$-component of field from bound charge: \(-\sigma_b/2\varepsilon_0\), so +\[ + \sigma_b = \varepsilon_0 \chi_e \left[ -\frac{1}{4\pi\varepsilon_0} \frac{qd}{(r^2 + d^2)^{3/2}} - \frac{\sigma_b}{2\varepsilon_0} \right], + \] +so +\[ + \sigma_b = -\frac{1}{2\pi} \left(\frac{\chi_e}{\chi_e + 2}\right) \frac{qd}{(r^2 + d^2)^{3/2}}. + \label{Gr(4.50)} + \] +As per conducting plane, except for factor \(\chi_e/(\chi_e + 2)\). Total bound charge: +\[ + q_b = -\left(\frac{\chi_e}{\chi_e + 2}\right) q. + \] +Field: by direct integration, or more nicely by method of images: replace dielectric by single point charge +\(q_b\) at \((0,0,-d)\): +\[ + V (x,y,z>0) = \frac{1}{4\pi\varepsilon_0} \left[ \frac{q}{\sqrt{x^2 + y^2 + (z-d)^2}} + \frac{q_b}{\sqrt{x^2 + y^2 + (z+d)^2}}\right] + \] +A charge \(q + q_b\) at \((0,0,d)\) gives +\[ + V (x,y,z<0) = \frac{1}{4\pi\varepsilon_0} \left[ \frac{q + q_b}{\sqrt{x^2 + y^2 + (z-d)^2}}\right] + \] +Putting these two together yields a solution to Poisson going to zero at infinity, and is therefore the unique solution. +Correct discontinuity at \(z = 0\): +\[ + -\varepsilon_0 \left( \frac{\partial V}{\partial z}|_{z = 0^+} - \frac{\partial V}{\partial z}|_{z = 0^-} \right) + = -\frac{1}{2\pi} \left(\frac{\chi_e}{\chi_e + 2}\right) \frac{qd}{(r^2 + d^2)^{3/2}}. + \] +Force on \(q\): +\[ + {\bf F} = \frac{1}{4\pi\varepsilon_0} \frac{q q_b}{4d^2} \hat{\bf z} = -\frac{1}{4\pi\varepsilon_0} \left( + \frac{\chi_e}{\chi_e + 2} \right) \frac{q^2}{4d^2} \hat{\bf z} + \label{Gr(4.54)} + \] +

+ +
+
+
+ +
+
Energy in Dielectric Systems
+
+

+To charge a capacitor: +\[ +W = \frac{1}{2} C V^2 +\] +If capacitor filled with linear isotropic dielectric (Ex. 4.6): +\[ +C = \varepsilon_r C_{vac} +\] +From Chap. 2: +\[ +W = \frac{\varepsilon_0}{2} \int d\tau E^2 +\] +How is this changed ? Counting only energy in fields: should decrease by +factor \(1/\varepsilon_r^2\). However, this would neglect the {\bf strain energy} +associated to the distortion of the polarized constituents of the dielectric medium. +

+ +

+Derivation from scratch: bring in free charge: \(\rho_f\) increased by \(\Delta \rho_f\), polarization changes +(also bound charge distribution). Work done on free charges (only that matters): +\[ +\Delta W = \int d\tau (\Delta \rho_f ({\bf r})) V ({\bf r}). +\label{Gr(4.56)} +\] +But \(\rho_f = {\boldsymbol \nabla} \cdot {\bf D}\) so \(\Delta \rho_f = {\boldsymbol \nabla} \cdot (\Delta {\bf D})\), so +\[ +\Delta W = \int d\tau ({\boldsymbol \nabla} \cdot (\Delta {\bf D})) V += \int d\tau {\boldsymbol \nabla} \cdot ((\Delta {\bf D}) V) + \int d\tau (\Delta {\bf D}) \cdot {\bf E} +\] +First integral: divergence theorem changes it to a surface integral which vanishes when integrating over all space. +Therefore, +\[ +\Delta W = \int d\tau (\Delta {\bf D}) \cdot {\bf E} +\label{Gr(4.57)} +\] +This applies to any material. +

+ +

+Special case of linear isotropic dielectric: \({\bf D} = \varepsilon {\bf E}\), so +\[ +\Delta W = \Delta \left( \frac{1}{2} \int d\tau {\bf D} \cdot {\bf E} \right) +\] +Total work done: +

+
+

+\[ + W = \frac{1}{2} \int d\tau {\bf D} \cdot {\bf E} + \label{Gr(4.58)} + \] +

+ +
+
+
+ + +
+
Forces on Dielectrics
+
+

+As for a conductor: a dielectric is attracted into an electric field. Calculations can be +complicated: parallel plate capacitor with partially inserted dielectric: force comes +from {\bf fringing field} around edges. +

+ +

+Better: reason from energy. Pull dielectric out by \(dx\). Energy change equal to work done: +\[ +dW = F_{me} dx +\label{Gr(4.59)} +\] +where \(F_{me}\) is mechanical force exerted by external agent. \(F_{me} = -F\), where \(F\) is +electrical force on dielectric. Electrical force on slab: +\[ +F = -\frac{dW}{dx} +\label{Gr(4.60)} +\] +Energy stored in capacitor: +\[ +W = \frac{1}{2} C V^2 +\label{Gr(4.61)} +\] +Capacitance in configuration considered: +\[ +C = \frac{\varepsilon_0 w}{d} (\varepsilon_r l - \chi_e x) +\label{Gr(4.62)} +\] +where \(l\) is the length of the plates, and \(w\) is their width. Assume total charge \(Q\) on each +plate is held constant as \(x\) changes. In terms of \(Q\), +\[ +W = \frac{1}{2} \frac{Q^2}{C} +\label{Gr(4.63)} +\] +so +\[ +F = -\frac{dW}{dx} = \frac{1}{2} \frac{Q^2}{C^2} \frac{dC}{dx} = \frac{1}{2} V^2 \frac{dC}{dx}. +\label{Gr(4.64)} +\] +But +\[ +\frac{dC}{dx} = -\frac{\varepsilon_0 \chi_e w}{d} +\] +so +\[ +F = -\frac{\varepsilon_0 \chi_e w}{2d} V^2. +\label{Gr(4.65)} +\] +

+ +

+Common mistake: to use \ref{Gr(4.61)} (for \(V\) constant) instead of \ref{Gr(4.63)} +(for \(Q\) constant) in computing the force. In this case, sign is reversed, +\[ +F = -\frac{1}{2} V^2 \frac{dC}{dx}. +\] +Here, the battery also does work, so +\[ +dW = F_{me} dx + V dQ +\label{Gr(4.66)} +\] +and +\[ +F = -\frac{dW}{dx} + V \frac{dQ}{dx} = -\frac{1}{2} V^2 \frac{dC}{dx} + V^2 \frac{dC}{dx} = \frac{1}{2} V^2 \frac{dC}{dx} +\label{Gr(4.67)} +\] +so like before but with the correct sign. +

+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_esm_fpo.html b/build/emsm_esm_fpo.html new file mode 100644 index 0000000..aab5aad --- /dev/null +++ b/build/emsm_esm_fpo.html @@ -0,0 +1,2016 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

The Field of a Polarized Object + + +emsm.esm.fpo

+ +
+

+For a macroscopic moment: local induced/permanent dipole moments tend to somewhat cancel each other, leaving a residual +polarization. Convenient measure: +\[ +{\bf P} \equiv ~\mbox{dipole moment per unit volume} +\] +called the {\bf polarization}. +What is the electric field produced by an object with polarization \({\bf P}\) ? Work with the potential. +For a single dipole, \ref{eq:electric_dipole}: +\[ +V({\bf r}) = \frac{1}{4\pi \varepsilon_0} \frac{({\bf r} - {\bf r}') \cdot {\bf p}}{|{\bf r} - {\bf r}'|^3} +\label{Gr(4.8)} +\] +With dipole moment per unit volume \({\bf P}\), we get +\[ +V({\bf r}) = \frac{1}{4\pi\varepsilon_0} \int_{\cal V} d\tau' \frac{({\bf r} - {\bf r}') \cdot {\bf P}({\bf r}')}{|{\bf r} - {\bf r}'|^3} +\label{Gr(4.9)} +\] +This is correct as it is. There exists however another convenient representation. We know that +\[ +{\boldsymbol \nabla}' \frac{1}{|{\bf r} - {\bf r}'|} = \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} +\] +so we can write (using product rule number 5, ${\boldsymbol ∇} ⋅ (f {\bf A}) = f ({\boldsymbol ∇} ⋅ {\bf A}) + {\bf A} ⋅ {\boldsymbol ∇} f$~) +

+\begin{align} +V({\bf r}) &= \frac{1}{4\pi\varepsilon_0} \int_{\cal V} d\tau' {\bf P} ({\bf r}') \cdot +{\boldsymbol \nabla}' \frac{1}{|{\bf r} - {\bf r}'|} \nonumber \\ +& = \frac{1}{4\pi \varepsilon_0} \left[ \int_{\cal V} d\tau' {\boldsymbol \nabla}' \cdot \left( \frac{{\bf P} ({\bf r}')}{|{\bf r} - {\bf r}'|} \right) +- \int_{\cal V} d\tau' \frac{1}{|{\bf r} - {\bf r}'|} {\boldsymbol \nabla}' \cdot {\bf P} ({\bf r}') \right] +\end{align} +

+Using the divergence theorem, this becomes +\[ +V({\bf r}) = \frac{1}{4\pi\varepsilon_0} \oint\cal S d{\bf a}' ⋅ \frac{{\bf P} ({\bf r}')}{|{\bf r} - {\bf r}'|} +

+ +

+\label{Gr(4.10)} +\] +Interpretation: first terms is like contribution of a surface charge, +

+
+

+\[ + \sigma_b({\bf r}) = {\bf P} ({\bf r}) \cdot \hat{\bf n} + \label{Gr(4.11)} + \] +

+ +
+

+and second term looks like contribution of a volume charge, +

+
+

+\[ + \rho_b ({\bf r}) = -{\boldsymbol \nabla} \cdot {\bf P} ({\bf r}) + \label{Gr(4.12)} + \] +

+ +
+

+Using these definitions, +

+
+

+\[ + V({\bf r}) = \frac{1}{4\pi\varepsilon_0} \oint\cal S d{\bf a}' ⋅ \frac{σb ({\bf r}')}{|{\bf r} - {\bf r}'|} +

+
    +
  • \frac{1}{4\pi \varepsilon_0} ∫\cal V dτ' \frac{ρb ({\bf r}')}{|{\bf r} - {\bf r}'|}.
  • +
+

+ \label{Gr(4.13)} +\] +

+ +
+

+These {\bf bound charges} faithfully represent the object's sources for electrical fields. +

+ + +
+

+\paragraph{Example 4.2:} electric field produced by uniformly polarized sphere of radius \(R\). +\paragraph{Solution:} put \(z\) axis along \({\bf P}\). Since \({\bf P}\) is uniform, \(\rho_b = 0\). +Surface charge: +\[ + \sigma_b ({\bf r}) = {\bf P} \cdot \hat{\bf n} = P \cos \theta. + \] +This was computed in Example: surface charge density on a sphere (eq. \ref{eq:PotentialUniformlyPolarizedSphere}): +\[ + V(r, \theta) = \left\{ \begin{array}{cc} + \frac{P}{3\varepsilon_0} r\cos \theta, & r \leq R \\ + \frac{P}{3\varepsilon_0} \frac{R^3}{r^2} \cos \theta, & r \geq R. + \end{array} \right. + \] +But \(r\cos \theta = z\), so the field inside the sphere is uniform, +\[ + {\bf E} = -{\boldsymbol \nabla} V = -\frac{P}{3\varepsilon_0} \hat{\bf z} = -\frac{1}{3\varepsilon_0} {\bf P}, + \hspace{1cm} r < R. + \label{Gr(4.14)} + \] +Outside sphere, potential is identical to that of pure point dipole at origin, +\[ + V({\bf r}) = \frac{1}{4\pi\varepsilon_0} \frac{{\bf p} \cdot {\hat {\bf r}}}{r^2}, + \hspace{1cm} r > R + \label{Gr(4.15)} + \] +where the total dipole moment is simply the integral over the polarization, +\[ + {\bf p} = \frac{4}{3} \pi R^3 {\bf P} + \label{Gr(4.16)} + \] +

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_esm_fpo_fid.html b/build/emsm_esm_fpo_fid.html new file mode 100644 index 0000000..e2b00d4 --- /dev/null +++ b/build/emsm_esm_fpo_fid.html @@ -0,0 +1,2010 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Field Inside a Dielectric + + +emsm.esm.fpo.fid
+
+

+Outside dielectric: OK, don't need microscopic details of field. +

+ +

+Inside dielectric: microscopic field is very complicated. Macroscopic field is what we should +concentrate on. Defined as average field over region containing many constituents. +

+ +

+Suppose we want to calculate field at point \({\bf r}\) inside dielectric. Consider a sphere around +\({\bf r}\), such that many atoms are within the sphere. Total macroscopic electric field: +\[ +{\bf E} = {\bf E}_{out} + {\bf E}_{in}. +\] +From Problem 3.47, average field (over a sphere) produced by charges outside sphere is +equal to field they produce at center of sphere. Therefore, \({\bf E}_{out}\) is field at \({\bf r}\) +from dipoles exterior to sphere, for which we can use \ref{Gr(4.9)}: +\[ +V_{out} ({\bf r}) = \frac{1}{4\pi\varepsilon_0} \int_{out} d\tau' \frac{({\bf r} - {\bf r}') \cdot {\bf P} ({\bf r}')} +{|{\bf r} - {\bf r}'|^3} +\label{Gr(4.17)} +\] +For dipoles inside: cannot be treated in this fashion. But their average field is all we need, and +this is given by \ref{Gr(3.105)} (see Example below) +\[ +{\bf E}_{av} = -\frac{1}{4\pi\varepsilon_0} \frac{\bf p}{R^3} +\label{Gr(3.105)} +\] +irrespective of charge distribution within sphere. +

+ +
+

+\paragraph{Problem 3.47:} show that the average field inside sphere of radius \(R\) due to all charges within +the sphere is +\[ + {\bf E}_{av} = -\frac{1}{4\pi\varepsilon_0} \frac{{\bf p}}{R^3} + \label{Gr(3.105)} + \] +where \({\bf p}\) is the dipole moment. Many ways to do this. +\paragraph{a)} show that average field due to single charge \(q\) at \({\bf r}\) inside sphere is same as +field at \({\bf r}\) due to uniformly charged sphere with \(\rho = -q/(\frac{4}{3} \pi R^3)\), +\[ + \frac{1}{4\pi \varepsilon_0} \frac{1}{\frac{4}{3} \pi R^3} \int d\tau' q \frac{{\bf r}' - {\bf r}}{|{\bf r} - {\bf r}'|^3}. + \] +\paragraph{Solution}: average field due to point charge \(q\) at \({\bf r}\): +\[ + {\bf E}_{av} = \frac{1}{\frac{4}{3} \pi R^3} \int d\tau' {\bf E} ({\bf r}'), \hspace{1cm} + {\bf E}({\bf r}') = \frac{q}{4\pi \varepsilon_0} \frac{{\bf r'} - {\bf r}}{|{\bf r} - {\bf r}'|^3} + \] +so +\[ + {\bf E}_{av} = \frac{1}{\frac{4}{3} \pi R^3} \frac{q}{4\pi\varepsilon_0} \int d\tau' \frac{{\bf r'} - {\bf r}}{|{\bf r} - {\bf r}'|^3} + \] +Field at \({\bf r}\) due to uniformly charged sphere: +\[ + {\bf E}_s ({\bf r}) = \frac{1}{4\pi\varepsilon_0} \int d\tau' \rho({\bf r}') \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} + \] +If \(\rho = -q/(\frac{4}{3} \pi R^3)\), the two expressions coincide. +

+ +

+\paragraph{b)} +Express the latter in terms of the dipole moment. +\paragraph{Solution:} from Problem 2.12, field inside uniformly charged sphere is +\[ + {\bf E} ({\bf r}) = \frac{1}{3\varepsilon_0} \rho \hat{\bf r} + \] +so +\[ + {\bf E}_{s} ({\bf r}) = \left. \frac{1}{3\varepsilon_0} \rho \hat{\bf r} \right|_{\rho = \frac{-q}{\frac{4}{3}\pi R^3}} = -\frac{q}{4\pi\varepsilon_0} \frac{\hat{\bf r}}{R^3} = -\frac{{\bf p}}{4\pi\varepsilon_0 R^3}. + \] +\paragraph{c)} Arbitrary charge distribution +\paragraph{Solution:} just use superposition ! +\paragraph{d)} Show that the average field over the volume of a sphere due to all the charges outside is the same as the field they produce at the center: +\paragraph{Solution:} +Field at \({\bf r}'\) due to charge at \({\bf r}\) outside the sphere: +\[ + {\bf E} ({\bf r}') = \frac{q}{4\pi\varepsilon_0} \frac{{\bf r'} - {\bf r}}{|{\bf r} - {\bf r}'|^3} + \] +Averaged over sphere: +\[ + {\bf E}_{av} = \frac{1}{\frac{4}{3} \pi R^3} \frac{q}{4\pi\varepsilon_0} \int d\tau' \frac{{\bf r'} - {\bf r}}{|{\bf r} - {\bf r}'|^3} + \] +This is same as field produced at \({\bf r}\) outside sphere, by uniformly charged sphere with \(\rho = -q/(\frac{4}{3} \pi R^3)\). +We know that this is simply +\[ + {\bf E}_s = \frac{1}{4\pi\varepsilon_0} (-q) \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3} + \] +where the sphere is centered on \({\bf r}'\). But this is precisely the field produced at the center of the sphere \({\bf r}'\), by +a charge \(q\) sitting at \({\bf r}\). +

+ +
+ + +

+We thus have +\[ +{\bf E}_{in} = -\frac{1}{4\pi\varepsilon_0} \frac{\bf p}{R^3} +\] +Since \({\bf p} = \frac{4}{3} \pi R^3 {\bf P}\), we get +\[ +{\bf E}_{in} = -\frac{1}{3\varepsilon_0} {\bf P} +\label{Gr(4.18)} +\] +

+ +

+Now: by assumption, \({\bf P}\) does not vary significantly over volume of sphere. +Term left out of \ref{Gr(4.17)} is thus field at center of uniformly polarized sphere. +But this is precisely equal to the \({\bf E}_{in}\) contribution, so macroscopic field is +given by the potential +\[ +V({\bf r}) = \frac{1}{4\pi\varepsilon_0} \int_{\cal V} d\tau' \frac{({\bf r} - {\bf r}') \cdot {\bf P} ({\bf r}')} +{|{\bf r} - {\bf r}'|^3} +\label{Gr(4.19)} +\] +where \({\cal V}\) is the entire volume of the dielectric. +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_esm_fpo_pibc.html b/build/emsm_esm_fpo_pibc.html new file mode 100644 index 0000000..c2f4e96 --- /dev/null +++ b/build/emsm_esm_fpo_pibc.html @@ -0,0 +1,1913 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Physical Interpretation of Bound Charges + + +emsm.esm.fpo.pibc
+
+

+Surface charge and volume charge from polarization. +

+ +

+Consider an initially neutral small volume \({\cal V}\) with closed surface \({\cal S}\). When the external electric +field is applied, the material in \({\cal V}\) will distort, and some charges will move across +\({\cal S}\). The leftover charge in \({\cal V}\) is simply the bound charge, and is +the negative of the charge that has moved across the boundary \({\cal S}\), +\[ +\int_{\cal V} d\tau \rho_b = -\oint_{\cal S} d{\bf a} \cdot {\bf P} +\] +Using the divergence theorem, and since this must hold for any volume, we recover +\(\rho_b = - {\boldsymbol \nabla} \cdot {\bf P}\). +

+ +

+Surface charge: draw pictures of material near its boundary, with cancellations everywhere except on boundary. +

+ +

+Volume charge: drawing of diverging polarization. +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_esm_p.html b/build/emsm_esm_p.html new file mode 100644 index 0000000..dbc6192 --- /dev/null +++ b/build/emsm_esm_p.html @@ -0,0 +1,2026 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Polarization + + +emsm.esm.p

+
+

+How Electric Fields Influence Matter +

+ + + +

+\paragraph{E fields on fundamental particles:} complicated business. +Quantum mechanics is obviously important here. +In fact, the measured charge of an electron is a 'renormalized' charge +(it depends on how closely you probe the electron, in other words at what collision/scattering +energies you probe it). This goes beyond the current course, and needs the whole machinery +of {\bf quantum electrodynamics}. +

+ +

+For us here, we will assume that fundamental particles remain 'unchanged' in the presence of an E field, +irrespective of how strong the latter is. +

+ +

+\paragraph{Simple atoms:} for example Hydrogen. +We simply have a nucleus (proton) with an orbiting electron. +The mass ratio between these is about 1800 to 1. To treat this, we'd need to start from the +nonrelativistic Schr\"odinger equation for the electron (assuming we're in the center-of-mass frame) +in the presence of a constant (for simplicity) external electric field \({\bf E}\): +\[ +-\frac{\hbar^2}{2m} {\boldsymbol \nabla}^2 \psi - \frac{e^2}{4\pi \varepsilon_0 r} \psi - e {\bf E} \cdot {\bf r} ~\psi = E \psi. +\] +As compared to the zero-field case, the energy levels are modified changed +(by the Stark effect, linear and nonlinear (latter for case of hydrogen in fundamental level); +see Landau Lifschitz, vol 3 nr 77). +

+ +

+If the field is small, one can use perturbation theory. This gives an electric dipole moment of: +\[ +{\bf p} = \langle \psi | (-e {\bf r}) | \psi \rangle = ... = \frac{9}{2} (4\pi \varepsilon_0 a_B^3) {\bf E} +\] +where \(a_B\) is the Bohr radius, \(a_B = \hbar^2/m e^2\). +

+ +

+Although the numerical factor is not guessable, the overall form is: +Le Ch\atelier's principle tells us that the equilibrium position moves linearly with the strength of the +perburtation. +

+ +

+\paragraph{More complex atoms:} we face a similar scenario. +The nucleus is now relatively even heavier than each electron. +At small fields, we can neglect nonlinear effects +({\it e.g.} a given electron orbital change leading to changes in other orbitals). +We still expect to have some induced dipole moment which increases linearly with the external field, +\[ +{\bf p} = \alpha {\bf E} +\] +except that now we have to solve a much more complicated QM problem. +The factor \(\alpha\) is an atom-specific number called the {\bf atomic polarizability}. +

+ +

+\paragraph{Molecules:} atoms can now 'share' electrons, so the charge distribution can become nontrivial. +Example: carbon dioxide, \(O - C - O\). Higher polarizability along axis than perpendicular to axis. +In totally non-symmetric case: expect +\[ +p_i = \sum_{j = x,y,z} \alpha_{ij} E_j +\] +where \(\alpha_{ij}\) is the {\bf polarizability tensor} of the molecule. Always possible to use 'principal' axes +such that all but 3 of the terms cancel. +

+ +

+\paragraph{Polar molecules:} unlike individual atoms, molecules can have a permanent dipole moment. These are called +{\bf polar molecules}. Example: \(H Cl\) has elecronic density more closely bound on \(Cl\) than \(H\), so has a dipole +moment pointing from \(Cl\) to \(H\). Other example: water, with \(105^\circ\) angle between the \(H^+\) and \(O^-\), +dipole moment pointing from \(O^-\) along bisector. +

+ +

+Torque on dipole: if field is uniform, overall force on dipole cancels, but torque remains: +

+
+

+{\bf Torque on a dipole:} +\[ + {\bf N} = {\bf p} \times {\bf E} + \label{Gr(4.4)} + \] +

+ +
+

+If field is non-uniform, +\[ + {\bf F} = {\bf F}_+ + {\bf F}_- = q({\bf E}_+ - {\bf E}_-) = q ({\bf d} \cdot {\boldsymbol \nabla}) {\bf E} + \] +so +

+
+

+\[ + {\bf F} = ({\bf p} \cdot {\boldsymbol \nabla}) {\bf E} + \label{Gr(4.5)} + \] +

+ +
+

+Energy of dipole in electric field (Problem 4.7): +\[ +\boxed{ +U = -{\bf p} \cdot {\bf E} +} +\label{Gr(4.6)} +\] +

+ +

+\paragraph{Many atoms: gas and liquid phases:} here, atoms or molecules are still more or less free from each other's influence +as far as polarization is concerned. Random thermal motion, +external field gives preferential direction to polarization. +The relationship is still linear. +

+ +

+\paragraph{Many atoms: solid phase:} here, things can be more complicated. Material can be insulating or conducting. +If conducting: external field makes charges move such that interior becomes equipotential. +If insulating: each constituent atom/molecule can pick up an induced polarization, polar molecules can tend to +line up, crystal structure can be deformed, … +

+ +

+For zero field, the solid can have either zero or nonzero polarization. If nonzero: we call this spontaneous polarization, +or rather {\bf ferroelectricity} (after {\bf ferromagnetism}, which is the correspdonding magnetic phenomenon happening with iron). +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_esm_s.html b/build/emsm_esm_s.html new file mode 100644 index 0000000..b1d4f35 --- /dev/null +++ b/build/emsm_esm_s.html @@ -0,0 +1,1890 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

A proper definition of "statics" + + +emsm.esm.s

+
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm.html b/build/emsm_msm.html new file mode 100644 index 0000000..827191e --- /dev/null +++ b/build/emsm_msm.html @@ -0,0 +1,1921 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Magnetostatics in matter + + +emsm.msm

+ +
+
+ +Prerequisites + +
    +
  • Electrostatics in Matter
  • +
  • Magnetostatics
  • +
+
+ +
+ +Objectives + +
    +
  • Know the meaning of diamagnetism, paramagnetism and ferromagnetism
  • +
  • Understand torques and forces on magnetic dipoles
  • +
  • Know the concepts of bound volume and surface currents
  • +
  • Understand the \({\bf H}\) field
  • +
  • Know the concepts of susceptibility and permeability
  • +
  • Know how to treat magnetostatics in linear media
  • +
+
+
+ + + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_H.html b/build/emsm_msm_H.html new file mode 100644 index 0000000..b9d2b6c --- /dev/null +++ b/build/emsm_msm_H.html @@ -0,0 +1,1894 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

The H Field + + +emsm.msm.H

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_H_A.html b/build/emsm_msm_H_A.html new file mode 100644 index 0000000..553f483 --- /dev/null +++ b/build/emsm_msm_H_A.html @@ -0,0 +1,2041 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Ampère's Law in Magnetized Materials + + +emsm.msm.H.A
+
+

+Nomenclature: as in electric case, we have bound currents, and everything else, which we call the {\bf free current}. +Total current: +\[ +{\bf J} = {\bf J}_b + {\bf J}_f +\label{Gr(6.17)} +\] +Ampère's law: +\[ +\frac{1}{\mu_0} ({\boldsymbol \nabla} \times {\bf B}) = {\bf J} = {\bf J}_f + {\bf J}_b += {\bf J}_f + ({\boldsymbol \nabla} \times {\bf M}), +\] +so we can define +

+
+

+\[ + {\bf H} \equiv \frac{1}{\mu_0} {\bf B} - {\bf M} + \label{Gr(6.18)} + \] +

+ +
+

+and rewrite Ampère's law as +

+
+

+\[ + {\boldsymbol \nabla} \times {\bf H} = {\bf J}_f + \label{Gr(6.19)} + \] +

+ +
+

+or in integral form, +

+
+

+\[ + \oint {\bf H} \cdot d{\bf l} = I_{f_{enc}} + \label{Gr(6.20)} + \] +

+ +
+

+\({\bf H}\) in magnetostatics: parallel role to \({\bf D}\) in electrostatics. Allows us to +rewrite Ampère's law in terms of free currents alone. Bound currents come along for the ride. +

+ +
+

+\paragraph{Example 6.2:} long copper rod radius \({\bf R}\) carries uniformly distributed free current \(I\). +Find \({\bf H}\) inside and outside rod. +\paragraph{Solution:} copper weakly diamagnetic: dipoles line up opposite the field. +Bound currents antiparallel to \(I\) in bulk and parallel at surface. All currents longitudinal +so \({\bf B}, {\bf M}, {\bf H}\) are circumferential. Apply integral form of Ampère's law with +radius \(s < R\): \(H (2\pi s) = I_{f_{enc}} = I \frac{\pi s^2}{\pi R^2}\) so +\[ + {\bf H} = \frac{I s}{2\pi R^2} \hat{\boldsymbol \phi}, \hspace{5mm} s \leq R + \label{Gr(6.21)} + \] +Outside, +\[ + {\bf H} = \frac{I}{2\pi s} \hat{\boldsymbol \phi}, \hspace{5mm} s \geq R. + \label{Gr(6.22)} + \] +There, \({\bf M} = 0\) so \({\bf B} = \mu_0 {\bf H}\). +

+ +
+
+ +
+
A Deceptive Parallel
+
+

+Similarly to electric case: cannot assume that \({\bf H}\) is like \({\bf B}\). +\({\bf H}\) might have a divergence, +\[ +{\boldsymbol \nabla} \cdot {\bf H} = -{\boldsymbol \nabla} \cdot {\bf M} +\label{Gr(6.23)} +\] +

+
+
+ +
+
Energy in Linear Media
+
+

+Recall \ref{Gr(7.31)}, magnetic energy of system of free currents: +\[ +W_{mag} = \frac{1}{2} \int_{\cal V} d\tau {\bf A} \cdot {\bf J}_f +\] +Similarly to the electric case, we can consider the presence of linear media. +Then, work necessary to increase flux is (from EMF) \(\Delta W_{mag} = V_{ext} \Delta q = V I \Delta t = I \Delta \phi\) so +\[ +\Delta W_{mag} = I \Delta \phi +\] +In terms of current density: use \(\phi = \int_{\cal S} (\boldsymbol \nabla \times {\bf A}) \cdot d{\bf a} = \int_{\cal C} {\bf A} \cdot d{\bf s}\), +move to volume currents: +\[ +\Delta W_{mag} = \int_{\cal V} d\tau {\bf J}_f \cdot \Delta {\bf A} = \int_{\cal V} d\tau ({\boldsymbol \nabla} \times {\bf H}) \cdot \Delta {\bf A} +\] +But \({\boldsymbol \nabla} \times (\Delta {\bf A}) = \Delta {\bf B}\) and +\[ +({\boldsymbol ∇} × {\bf H}) ⋅ Δ {\bf A} = {\bf H} ⋅ ({\boldsymbol ∇} × Δ {\bf A}) +

+
    +
  • {\boldsymbol ∇} ⋅ (Δ {\bf A} × {\bf H}) = {\bf H} ⋅ Δ {\bf B} - {\boldsymbol ∇} ⋅ (Δ {\bf A} × {\bf H})
  • +
+

+\] +Integrating, we get +\[ +\Delta W_{mag} = \int_{all~space} d\tau {\bf H} \cdot \Delta {\bf B} +\] +Case of linear isotopic homogeneous medium: +\[ +W_{mag} = \int_{all~space} d\tau \frac{1}{2} {\bf H} \cdot {\bf B} +\] +

+ + + +

+\subsubsection*{Boundary conditions} +Can rewrite BCs in terms of \({\bf H}\): from \ref{Gr(6.23)}, +\[ +H^{\perp}_{above} - H^{\perp}_{below} = -(M^{\perp}_{above} - M^{\perp}_{below}) +\label{Gr(6.24)} +\] +while \ref{Gr(6.19)} gives +\[ +{\bf H}^{\parallel}_{above} - {\bf H}^{\parallel}_{below} = {\bf K}_f \times \hat{\bf n} +\label{Gr(6.25)} +\] +These are more useful than BCs on \({\bf B}\), \ref{Gr(5.72)} and \ref{Gr(5.73)}: +\[ +B^{\perp}_{above} = B^{\perp}_{below}. +\label{Gr(6.26)} +\] +and +\[ +{\bf B}^{\parallel}_{above} - {\bf B}^{\parallel}_{below} = \mu_0 K \times \hat{\bf n} +\label{Gr(6.27)} +\] +

+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_a.html b/build/emsm_msm_a.html new file mode 100644 index 0000000..ff240db --- /dev/null +++ b/build/emsm_msm_a.html @@ -0,0 +1,1932 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Effect of Magnetic Field on Atomic Orbits + + +emsm.msm.a
+
+

+Orbital motion of electrons: so fast that 'current' is for most purposes steady: +\(I = e/T = \frac{ev}{2\pi R}\). Orbital dipole moment (\(I \pi R^2\)) is thus +\[ +{\bf m} = -\frac{evR}{2} \hat{\bf z} +\label{Gr(6.4)} +\] +In practice: harder to tilt orbit than spin, so this represents a small paramagnetic contribution. +

+ +

+More significant: speeding up or slowing down of electron on its orbit. Here: handwaving +calculation. Centripetal +acceleration: \(v^2/R\) usually sustained by electrical forces alone, +\[ +\frac{1}{4\pi \varepsilon_0} \frac{e^2}{R^2} = m_e \frac{v^2}{R} +\label{Gr(6.5)} +\] +In presence of magnetic field (say perpendicular to plane of orbit): +\[ +\frac{1}{4\pi \varepsilon_0} \frac{e^2}{R^2} + e \bar{v} B = m_e \frac{\bar{v}^2}{R} +\label{Gr(6.6)} +\] +New speed: \(e \bar{v} B = \frac{m_e}{R} (\bar{v}^2 - v^2) = \frac{m_e}{R} (\bar{v} + v) (\bar{v} - v)\), +or (assuming small change) +\[ +\Delta v = \frac{eRB}{2m_e} +\label{Gr(6.7)} +\] +So electron speeds up when \({\bf B}\) is turned on. Change in magnetic dipole moment: +\[ +\Delta {\bf m} = -\frac{1}{2} e(\Delta v) R \hat{\bf z} = -\frac{e^2 R^2}{4m_e} {\bf B} +\label{Gr(6.8)} +\] +so change in \({\bf m}\) is opposite to change in \({\bf B}\). Universal phenomenon, leading +to diamagnetism. Usually much weaker than paramagnetism. Observed in substances having even number of +electrons (where paramagnetism is usually absent). +

+ + +

+Fun fact: a paramagnet attracted into the field, whereas a diamagnet is repelled away. +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_fmo.html b/build/emsm_msm_fmo.html new file mode 100644 index 0000000..bb66340 --- /dev/null +++ b/build/emsm_msm_fmo.html @@ -0,0 +1,1896 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

The Field of a Magnetized Object + + +emsm.msm.fmo

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_fmo_bc.html b/build/emsm_msm_fmo_bc.html new file mode 100644 index 0000000..00e3e54 --- /dev/null +++ b/build/emsm_msm_fmo_bc.html @@ -0,0 +1,2014 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Bound Currents + + +emsm.msm.fmo.bc
+
+

+Suppose we have a piece of material with known magnetization \({\bf M}\). +What is the field produced by this object? +For a single dipole: refer to \ref{Gr(5.83)} (vector potential of single dipole): +\[ +{\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} \frac{{\bf m} \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3} +\label{Gr(6.10)} +\] +For a chunk of material with local magnetization \({\bf M} ({\bf r})\), +by the principle of superposition we thus have: +

+
+

+\[ + {\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} \int_{\cal V} d\tau' ~\frac{{\bf M} ({\bf r}') \times ({\bf r} - {\bf r}')}{|{\bf r} - {\bf r}'|^3} + \label{Gr(6.11)} + \] +

+ +
+

+In principle, this is all that is needed. +As in electric case however, a more illuminating version of this equation can be given +by using some simple identities: +using \({\boldsymbol \nabla}' \frac{1}{|{\bf r} - {\bf r}'|} = \frac{{\bf r} - {\bf r}'}{|{\bf r} - {\bf r}'|^3}\), +\[ +{\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} \int_{\cal V} d\tau' {\bf M} ({\bf r}') \times \left( {\boldsymbol \nabla}' +\frac{1}{|{\bf r} - {\bf r}'|} \right), +\] +we can further integrate by parts and use product rule: \({\boldsymbol \nabla} \times (f {\bf A}) = f ( {\boldsymbol \nabla} \times {\bf A}) - {\bf A} \times ({\boldsymbol \nabla} f)\), we get +\[ +{\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} \left\{ +∫\cal V dτ' \frac{{\boldsymbol ∇}' × {\bf M} ({\bf r}')}{|{\bf r} - {\bf r}'|} +

+
    +
  • \cal V dτ' {\boldsymbol ∇}' × \left( \frac{{\bf M} ({\bf r}')}{|{\bf r} - {\bf r}'|} \right)
  • +
+

+\right\} +\] +Problem 1.61 b) (p.56): leads to +\[ + {\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} + ∫\cal V dτ' \frac{{\boldsymbol ∇}' × {\bf M} ({\bf r}')}{|{\bf r} - {\bf r}'|} +

+
    +
  • \frac{\mu_0}{4\pi} \oint\cal S \frac{{\bf M} ({\bf r}') × d{\bf a}'}{|{\bf r} - {\bf r}'|}
  • +
+

+ \label{Gr(6.12)} +\] +Reinterpretation: first term: potential from volume current, +

+
+

+\[ + {\bf J}_b = {\boldsymbol \nabla} \times {\bf M} + \label{Gr(6.13)} + \] +

+ +
+

+second term: potential from surface current, +

+
+

+\[ + {\bf K}_b = {\bf M} \times \hat{\bf n} + \label{Gr(6.14)} + \] +

+ +
+

+With these definitions, +

+
+

+\[ + {\bf A} ({\bf r}) = \frac{\mu_0}{4\pi} ∫\cal V dτ' \frac{{\bf J}b ({\bf r}')}{|{\bf r} - {\bf r}'|} +

+
    +
  • \frac{\mu_0}{4\pi} \oint\cal S da' \frac{{\bf K}b ({\bf r}')}{|{\bf r} - {\bf r}'|}
  • +
+

+ \label{Gr(6.15)} +\] +

+ +
+

+so the field produced by the material is the same as that produced by {\bf bound currents} +in the volume and surface of the material. +

+ + + +
+

+\paragraph{Example 6.1:} find field of uniformly magnetized sphere. +\paragraph{Solution:} put z axis along \({\bf M}\). +\[ + {\bf J}_b = {\boldsymbol \nabla} \times {\bf M} = 0, + \hspace{1cm} + {\bf K}_b = {\bf M} \times \hat{\bf n} = M \sin \theta \hat{\boldsymbol \phi}. + \] +Rotating spherical shell of uniform surface charge \(\sigma\): surface current density +\[ + {\bf K} = \sigma {\bf v} = \sigma \omega R \sin \theta \hat{\boldsymbol \phi}. + \] +Same if \(\sigma R {\boldsymbol \omega} = {\bf M}\). Refer to Example 5.11,% ({\it not done in class !}), +\[ + {\bf B} = \frac{2}{3} \mu_0 {\bf M} + \label{Gr(6.16)} + \] +inside sphere, whereas outside: pure dipole field, with +\[ + {\bf m} = \frac{4}{3} \pi R^3 {\bf M}. + \] +

+ +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_fmo_fim.html b/build/emsm_msm_fmo_fim.html new file mode 100644 index 0000000..5e17b72 --- /dev/null +++ b/build/emsm_msm_fmo_fim.html @@ -0,0 +1,1892 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
The Magnetic Field Inside Matter + + +emsm.msm.fmo.fim
+
+

+As per electric case. Reasoning done in Problem 6.11. +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_fmo_pibc.html b/build/emsm_msm_fmo_pibc.html new file mode 100644 index 0000000..4125505 --- /dev/null +++ b/build/emsm_msm_fmo_pibc.html @@ -0,0 +1,1895 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Physical Interpretation of Bound Currents + + +emsm.msm.fmo.pibc
+
+

+As electric case: bound currents are real things. +Current loops inside matter: cancelling more or less, +unless non-uniform, or at the edge. +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_lnlm.html b/build/emsm_msm_lnlm.html new file mode 100644 index 0000000..c6b19c6 --- /dev/null +++ b/build/emsm_msm_lnlm.html @@ -0,0 +1,1895 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Linear and Nonlinear Media + + +emsm.msm.lnlm

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_lnlm_fm.html b/build/emsm_msm_lnlm_fm.html new file mode 100644 index 0000000..51fd9c9 --- /dev/null +++ b/build/emsm_msm_lnlm_fm.html @@ -0,0 +1,1893 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Ferromagnetism + + +emsm.msm.lnlm.fm
+
+

+Ferromagnets. Magnetic domains, {\bf hysteresis}. {\bf Curie point}: iron goes from ferromagnetic +to paramagnetic at about \(770^\circ C\). {\bf Phase transitions}. +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_lnlm_sp.html b/build/emsm_msm_lnlm_sp.html new file mode 100644 index 0000000..4dd73c9 --- /dev/null +++ b/build/emsm_msm_lnlm_sp.html @@ -0,0 +1,1933 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Magnetic Susceptibility and Permeability + + +emsm.msm.lnlm.sp
+
+

+In para/diamagnets: when \({\bf B}\) is removed, \({\bf M}\) disappears. For not too strong +fields, proportionality. Custom (slightly different than for dielectrics): +{\bf magnetic susceptibility} \(\chi_m\) defined as +

+
+

+\[ + {\bf M} = \chi_m {\bf H} + \label{Gr(6.29)} + \] +

+ +
+

+(and not \({\bf M} = \frac{1}{\mu_0} \chi_m {\bf B}\) had the electrostatics parallel +been followed historically). Materials that obey this are called linear media. Then, +\[ +{\bf B} = \mu_0 ({\bf H} + {\bf M}) = \mu_0 (1 + \chi_m) {\bf H} +\label{Gr(6.30)} +\] +and thus +\[ +{\bf B} = \mu {\bf H}, \hspace{1cm} \mu \equiv \mu_0 (1 + \chi_m) +\label{Gr(6.31)} +\] +where \(\mu\) is called the {\bf permeability} of the material. +

+ +

+Again, although \({\bf M}\) and \({\bf H}\) are proportional to \({\bf B}\), it doesn't follow +that their divergence vanishes. At the boundary between two different media, they can +have nonzero divergence. +

+ +

+In linear medium: bound volume current proportional to free current, +\[ +{\bf J}_b = {\boldsymbol \nabla} \times {\bf M} = {\boldsymbol \nabla} \times (\chi_m {\bf H}) += \chi_m {\bf J}_f. +\label{Gr(6.33)} +\] +

+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_m.html b/build/emsm_msm_m.html new file mode 100644 index 0000000..be387e8 --- /dev/null +++ b/build/emsm_msm_m.html @@ -0,0 +1,1896 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Magnetization + + +emsm.msm.m

+ +
+
+ + +
In this section:
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_m_dpf.html b/build/emsm_msm_m_dpf.html new file mode 100644 index 0000000..7a7396a --- /dev/null +++ b/build/emsm_msm_m_dpf.html @@ -0,0 +1,1906 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Diamagnetism, Paramagnetism, Ferromagnetism + + +emsm.msm.m.dpf
+
+

+{\bf Magnetization}: magnetic dipole moment per unit volume, denoted by \({\bf M}\). +

+ +

+\({\bf M}\) parallel to \({\bf B}\): {\bf paramagnets}
+\({\bf M}\) antiparallel to \({\bf B}\): {\bf diamagnets}
+\({\bf M} \neq 0\) even if \({\bf B} = 0\): {\bf ferromagnets} +

+
+ + +
+ + + + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/emsm_msm_m_fdi.html b/build/emsm_msm_m_fdi.html new file mode 100644 index 0000000..1616922 --- /dev/null +++ b/build/emsm_msm_m_fdi.html @@ -0,0 +1,1920 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+
Torques and Forces on Magnetic Dipoles + + +emsm.msm.m.fdi
+
+

+Torque on magnetic dipole: +

+
+

+\[ + {\bf N} = {\bf m} \times {\bf B} + \label{Gr(6.1)} + \] +

+ +
+

+Tends to align magnetic dipoles with field. Accounts for paramagnetism. +Exact for extended dipole in uniform field, or for point dipole in non-uniform field. +Similar to electric analogue, \ref{Gr(4.4)}, \({\bf N} = {\bf p} \times {\bf E}\). +

+ +

+In a non-uniform field: (to be done in Problem 6.4): +

+
+

+\[ + {\bf F} = {\boldsymbol \nabla} ({\bf m} \cdot {\bf B}) + \label{Gr(6.3)} + \] +

+ +
+
+
+ + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/fig/pr/cs_sph.asy b/build/fig/pr/cs_sph.asy new file mode 100644 index 0000000..e362704 --- /dev/null +++ b/build/fig/pr/cs_sph.asy @@ -0,0 +1,13 @@ +settings.outformat="png"; +settings.render=16; + +import three; + +size(5cm); + +draw(O -- 1.2X, arrow=Arrow3(emissive(black))); +draw(O -- 1.2Y, arrow=Arrow3(emissive(black))); +draw(O -- 1.2Z, arrow=Arrow3(emissive(black))); + +draw(arc(c=O, X, X + 2Y)); +draw(arc(c=O, Z, 0.5*X + Y + 0.8*Z)); diff --git a/build/fig/pr/cs_sph.png b/build/fig/pr/cs_sph.png new file mode 100644 index 0000000..35cbe4b Binary files /dev/null and b/build/fig/pr/cs_sph.png differ diff --git a/build/in.html b/build/in.html new file mode 100644 index 0000000..31a5a1e --- /dev/null +++ b/build/in.html @@ -0,0 +1,1895 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Introduction + + +in

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/in_p.html b/build/in_p.html new file mode 100644 index 0000000..4eb9e18 --- /dev/null +++ b/build/in_p.html @@ -0,0 +1,1895 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Preface + + +in.p

+
+

+These lecture notes provide a full treatment of classical (pre-quantum) +electromagnetic phenomena (static and dynamic). +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/in_t.html b/build/in_t.html new file mode 100644 index 0000000..864c60d --- /dev/null +++ b/build/in_t.html @@ -0,0 +1,1894 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Tips for the reader + + +in.t

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/in_t_c.html b/build/in_t_c.html new file mode 100644 index 0000000..9224152 --- /dev/null +++ b/build/in_t_c.html @@ -0,0 +1,1966 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Contextual colors + + +in.t.c

+
+

+Throughout these lecture notes, boxes with contextual colors are used, +serving specific purposes. These are: +

+ +
+ +Prerequisites + +

+Specific prerequisites for understanding the upcoming material +

+
    +
  • you should already know this
  • +
  • and this
  • +
  • and that
  • +
+
+ +
+ +Objectives + +

+Objectives for this part: what you should learn by reading this +

+
    +
  • this
  • +
  • and this
  • +
  • and that
  • +
+
+ +
+ +Core + +

+Core material: you have to know this by heart, and how to use it. +

+
+ +
+ +Main + +

+Main matter which you should know how to use. +

+
+ +
+ +Example + +

+Example of the concepts just covered. +

+
+ +
+ +Info + +

+Additional (contextual) information. +

+
+ +
+ +Historical Context + +

+Additional historical context. +

+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/index.html b/build/index.html new file mode 100644 index 0000000..bcd1e87 --- /dev/null +++ b/build/index.html @@ -0,0 +1,2436 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +
+

Pre-Quantum Electrodynamics

+

Online Lecture Notes

+
+ + + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/qed.html b/build/qed.html new file mode 100644 index 0000000..a579177 --- /dev/null +++ b/build/qed.html @@ -0,0 +1,1894 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Quantum Electrodynamics + + +qed

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/qed_t.html b/build/qed_t.html new file mode 100644 index 0000000..d3e6aef --- /dev/null +++ b/build/qed_t.html @@ -0,0 +1,1889 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

QED today + + +qed.t

+
+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red.html b/build/red.html new file mode 100644 index 0000000..fd25ea0 --- /dev/null +++ b/build/red.html @@ -0,0 +1,1924 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Relativistic Electrodynamics + + +red

+ +
+
+ +Prerequisites + +
    +
  • Electrodynamics
  • +
+
+ +
+ +Objectives + +
    +
  • Know the postulates of Special Relativity
  • +
  • Understand time dilation and Lorentz contraction
  • +
  • Know how to operate Lorentz transformations
  • +
  • Know covariant and contravariant four-vectors and their scalar product
  • +
  • Understand proper time and proper velocity
  • +
  • Understand relativistic momentum and energy
  • +
  • Know Newton's law (relativistic case) and the Minkowski force
  • +
  • Understand how relativity relates electricity and magnetism
  • +
  • Know how electromagnetic fields transform under a Lorentz transformation
  • +
  • Know the field tensor and its dual
  • +
  • Know Maxwell's equations in relativistic notation
  • +
+
+
+ + + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_rem.html b/build/red_rem.html new file mode 100644 index 0000000..e316149 --- /dev/null +++ b/build/red_rem.html @@ -0,0 +1,1897 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Relativistic Electromagnetism + + +red.rem

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_rem_Fmunu.html b/build/red_rem_Fmunu.html new file mode 100644 index 0000000..6f61714 --- /dev/null +++ b/build/red_rem_Fmunu.html @@ -0,0 +1,2010 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

The Field Tensor + + +red.rem.Fmunu

+
+

+We have seen that a four-vector transforms according to +\[ + \bar{a}^\mu = \Lambda_\nu^\mu a^\nu +\] +in which \(\Lambda\) is a matrix representing the Lorentz transformation. +The form this matrix takes depends on the actual transformation: for the specific +case of motion in the \(x\) direction with velocity \(v\), +\[ + \Lambda = \left( \begin{array}{cccc} + \gamma & -\gamma \beta & 0 & 0 \\ + -\gamma \beta & \gamma & 0 & 0 \\ + 0 & 0 & 1 & 0 \\ + 0 & 0 & 0 & 1 \end{array} \right). +\] +A four-vector is synonymous to a {\bf rank-one tensor}. +Higher-rank tensors are simply objects carrying more indices. +For example, a {\bf rank-two tensor} transforms as +\[ + \bar{t}^{\mu \nu} = \Lambda^\mu_\lambda \Lambda^\nu_\sigma t^{\lambda \sigma}. +\] +Such a rank-two tensor can be represented similarly to a matrix: +\[ + t^{\mu \nu} = \left( \begin{array}{cccc} + t^{00} & t^{01} & t^{02} & t^{03} \\ + t^{10} & t^{11} & t^{12} & t^{13} \\ + t^{20} & t^{21} & t^{22} & t^{23} \\ + t^{30} & t^{31} & t^{32} & t^{33} \end{array} \right). +\] +Special cases include symmetric \(t_s^{\mu \nu} = t_s^{\nu \mu}\) and +antisymmetric \(t_a^{\mu \nu} = -t_a^{\nu \mu}\) tensors. The latter contains +six independent elements: +\[ + t_a^{\mu \nu} = \left( \begin{array}{cccc} + 0 & t_a^{01} & t_a^{02} & t_a^{03} \\ + -t_a^{01} & 0 & t_a^{12} & t_a^{13} \\ + -t_a^{02} & -t_a^{12} & 0 & t_a^{23} \\ + -t_a^{03} & -t_a^{13} & -t_a^{23} & 0 \end{array} \right) +\] +Under the Lorentz transformation along \(x\) defined above, we can work out +how the nonvanishing elements of an antisymmetric tensor transform: +

+\begin{align} + \bar{t}_a^{01} &= \Lambda^0_\mu \Lambda^1_\nu t_a^{\mu \nu} + = \Lambda^0_0 \Lambda^1_0 t_a^{00} + \Lambda^0_1 \Lambda^1_0 t_a^{10} + + \Lambda^0_0 \Lambda^1_1 t_a^{01} + \Lambda^0_1 \Lambda^1_1 t_a^{11} \\ + & = (\Lambda^0_0 \Lambda^1_1 - \Lambda^0_1 \Lambda^1_0) t_a^{01} + = \gamma^2 (1 - \beta^2) t_a^{01} = t_a^{01}, \\ + \bar{t}_a^{02} &= \Lambda^0_\mu \Lambda^2_\nu t_a^{\mu \nu} + = \Lambda^0_0 \Lambda^2_2 t_a^{02} + \Lambda^0_1 \Lambda^2_2 t_a^{12} + = \gamma (t_a^{02} - \beta t_a^{12}), \\ + \bar{t}_a^{03} &= \Lambda^0_\mu \Lambda^3_\nu t_a^{\mu \nu} + = \Lambda^0_0 \Lambda^3_3 t_a^{03} + \Lambda^0_1 \Lambda^3_3 t_a^{13} + = \gamma (t_a^{03} - \beta t_a^{13}), \\ + \bar{t}_a^{12} &= \Lambda^1_\mu \Lambda^2_\nu t_a^{\mu \nu} + = \Lambda^1_0 \Lambda^2_2 t_a^{02} + \Lambda^1_1 \Lambda^2_2 t_a^{12} + = \gamma (t_a^{12} - \beta t_a^{02}), \\ + \bar{t}_a^{13} &= \Lambda^1_\mu \Lambda^3_\nu t_a^{\mu \nu} + = \Lambda^1_0 \Lambda^3_3 t_a^{03} + \Lambda^1_1 \Lambda^3_3 t_a^{13} + = \gamma (t_a^{13} - \beta t_a^{03}), \\ + \bar{t}_a^{23} &= \Lambda^2_\mu \Lambda^3_\nu t_a^{\mu \nu} + = \Lambda^2_2 \Lambda^3_3 t_a^{23} + = t_a^{23}. +\end{align} + + + +

+Comparing with the transformation rules for the electromagnetic field which we obtained in (\ref{eq:EMFieldsLorentzTransfo}), we can define the +

+
+

+{\bf Electromagnetic Field Tensor} +\[ + F^{\mu \nu} = \left( \begin{array}{cccc} + 0 & E_x/c & E_y/c & E_z/c \\ + -E_x/c & 0 & B_z & -B_y \\ + -E_y/c & -B_z & 0 & B_x \\ + -E_z/c & B_y & -B_x & 0 \end{array} \right) + \] +

+ +
+

+together with the handy +

+
+

+{\bf Dual Field Tensor} +\[ + G^{\mu \nu} = \left( \begin{array}{cccc} + 0 & B_x & B_y & B_z \\ + -B_x & 0 & -E_z/c & E_y/c \\ + -B_y & E_z/c & 0 & -E_x/c \\ + -B_z & -E_y/c & E_x/c & 0 \end{array} \right) + \] +

+ +
+

+obtained from the field tensor by the substitution +\({\boldsymbol E}/c \rightarrow {\boldsymbol B}\), +\({\boldsymbol B} \rightarrow -{\boldsymbol E}/c\). +

+ + + +

+Our electromagnetic field transformation laws then become the simple +

+
+

+{\bf Lorentz Transformation Rules for EM Fields} +\[ + \bar{F}^{\mu \nu} = \Lambda^\mu_\lambda \Lambda^\nu_\sigma F^{\lambda \sigma} + \] +

+ +
+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_rem_Ltf.html b/build/red_rem_Ltf.html new file mode 100644 index 0000000..ca5db4f --- /dev/null +++ b/build/red_rem_Ltf.html @@ -0,0 +1,2050 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Lorentz Transformation of Electromagnetic Fields + + +red.rem.Ltf

+
+

+Now that we know that what one observer sees as an electric field +can be view by another as a magnetic field, we can ask the general +question of how fields transform upon Lorentz transformations. +

+ +

+Let's start with what is perhaps the simplest case: the electric field +between the plates of an infinite parallel-plate capacitor. +For a surface charge density \(\sigma_0\) on bottom +and \(-\sigma_0\) on top plates (putting the plates perpendicular to \(\hat{\boldsymbol y}\)), this is +\[ + {\boldsymbol E}_0 = \frac{\sigma_0}{\varepsilon_0} \hat{\boldsymbol y}. +\] +

+ +

+Let us now assume that we move to a reference frame moving +at velocity \(v_0\) in direction \(\hat{\boldsymbol x}\). +In this frame, the field between the plates +will still be along \({\boldsymbol y}\). In terms of the surface +charge density per plate \(\sigma\) as measured in this frame, +\[ + {\boldsymbol E} = \frac{\sigma}{\varepsilon_0} \hat{\boldsymbol y}. +\] +Lorentz contraction affects the +length scale longitudinal to the motion (it does not +affect the perpendicular length scales) so the surface charge density in the +moving frame becomes +\[ + \sigma = \gamma_0 \sigma_0, \hspace{10mm} + \gamma_0 = \frac{1}{\sqrt{1 - v_0^2/c^2}}. +\] +In the two frames, the electric fields perpendicular to the direction of motion are thus related by +\[ + {\boldsymbol E}^\perp = \gamma_0 {\boldsymbol E}_0^\perp. +\] +For the field parallel to the motion, we can simply repeat the +argument but now with motion along \({\boldsymbol y}\). +Since Lorentz contraction does not affect the surface charge +density, we get +\[ + E^\parallel = E_0^\parallel. +\] +

+ +

+Going back to our setup with plates in the \(xz\) plane which we started from, +in the moving frame, there is now a magnetic field due to surface currents: +\[ + {\boldsymbol K}_{\mbox{\tiny top}} = \sigma v_0 \hat{\boldsymbol x} + = -{\boldsymbol K}_{\mbox{\tiny bot}}. +\] +This magnetic field between the plates is thus +\[ + {\boldsymbol B} = -\mu_0 \sigma v_0 ~\hat{\boldsymbol z}. +\] +

+ +

+If we now have a further referential frame \(\bar{S}\) moving at velocity +\(\bar{v}\) with respect to the original one, we'd have +\[ + \bar{E}_y = \frac{\bar{\sigma}}{\varepsilon_0}, \hspace{10mm} + \bar{B}_z = - \mu_0 \bar{\sigma} \bar{v} +\] +where +\[ + \bar{v} = \frac{v + v_0}{1 + v v_0/c^2}, \hspace{10mm} + \bar{\sigma} = \bar{\gamma} \sigma, \hspace{10mm} + \bar{\gamma} = \frac{1}{1 - \bar{v}^2/c^2}. +\] +

+ + + +

+We now want to express \(\bar{\boldsymbol E}, \bar{\boldsymbol B}\) in terms of +\({\boldsymbol E}, {\boldsymbol B}\) and other data in frame \({\cal S}\) +(here: \(v\)). To start, we have +\[ + \bar{E}_y = \frac{\bar{\gamma}}{\gamma_0} \frac{\sigma}{\varepsilon_0}, + \hspace{10mm} + \bar{B}_z = - \frac{\bar{\gamma}}{\gamma_0} \mu_0 \sigma \bar{v}. +\] +The ratio of contraction factors is +\[ + \frac{\bar{\gamma}}{\gamma_0} = \frac{\sqrt{1 - v_0^2/c^2}}{\sqrt{1 - \bar{v}^2/c^2}} + = \frac{\sqrt{c^2 - v_0^2} ~(1 + v v_0/c^2)}{\sqrt{c^2 (1 + vv_0/c^2)^2 - (v + v_0)^2}} + = \frac{1 + v v_0/c^2}{\sqrt{1 - v^2/c^2}} = \gamma (1 + vv_0/c^2). +\] +We can thus write +\[ + \bar{E}_y = \gamma (1 + v v_0/c^2) \frac{\sigma}{\varepsilon_0} + = \gamma \left( E_y - \frac{v}{c^2 \varepsilon_0 \mu_0} B_z \right) + = \gamma \left( E_y - v B_z \right) +\] +and +\[ + \bar{B}_z = -\gamma (1 + vv_0/c^2) \mu_0 \sigma \frac{v + v_0}{1 + vv_0/c^2} + = \gamma (B_z - \varepsilon_0 \mu_0 v E_y) + = \gamma (B_z - \frac{v}{c^2} E_y). +\] +

+ +

+To do \(E_z\) and \(B_y\), simply put the capacitor in the \(xy\) plane. +Following the same argument, this gives +\[ + \bar{E}_z = \gamma (E_z + v B_y), \hspace{10mm} + \bar{B}_y = \gamma \left( B_y + \frac{v}{c^2} E_z \right). +\] +We already know that \(\bar{E}_x = E_x\). For \(B_x\), we consider a +solenoid with axis along \(x\). The windings get tighter, +\(\bar{n} = \gamma n\) but the clock goes slower so \(\bar{I} = \frac{1}{\gamma} I\). +These factors cancel so \(\bar{B}_x = B_x\). +

+ + + +

+We thus obtain the +

+
+

+{\bf EM field transformation laws (motion along \(x\) with velocity \(v\))} +

+\begin{align} + \bar{E}_x &= E_x, \hspace{10mm} & + \bar{E}_y &= \gamma (E_y - v B_z), \hspace{10mm} & + \bar{E}_z &= \gamma (E_z + v B_y), \\ + \bar{B}_x &= B_x, & + \bar{B}_y &= \gamma \left( B_y + \frac{v}{c^2} E_z \right), & + \bar{B}_z &= \gamma \left( B_z - \frac{v}{c^2} E_y \right) + \label{eq:EMFieldsLorentzTransfo} +\end{align} + +
+ +

+Two special cases can be mentioned: +

+ +

+\paragraph{If \({\boldsymbol B} = 0\) in \({\cal S}\):} +Then, \(\bar{\boldsymbol B} = \gamma \frac{v}{c^2} (E_z \hat{\boldsymbol y} - E_y \hat{\boldsymbol z}) = \frac{v}{c^2} (\bar{E}_z \hat{\boldsymbol y} - \bar{E}_y \hat{\boldsymbol z})\) so +\[ + \bar{\boldsymbol B} = -\frac{1}{c^2} {\boldsymbol v} \times \bar{\boldsymbol E}. +\] +

+ +

+\paragraph{If \({\boldsymbol E} = 0\) in \({\cal S}\):} +Then, \(\hat{\boldsymbol E} = -\gamma v (B_z \hat{\boldsymbol y} - B_y \hat{\boldsymbol z}) = -v (\bar{B}_z \hat{\boldsymbol y} - \bar{B}_y \hat{\boldsymbol z})\) +so +\[ + \bar{\boldsymbol E} = {\boldsymbol v} \times \bar{\boldsymbol B}. +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_rem_Me.html b/build/red_rem_Me.html new file mode 100644 index 0000000..5b33f5c --- /dev/null +++ b/build/red_rem_Me.html @@ -0,0 +1,2029 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Maxwell's Equations in Relativistic Notation + + +red.rem.Me

+
+

+Let us consider a charge density of moving sources. +For an infinitesimal cloud of volume \(V\) containing charge \(Q\) +moving at velocity \({\boldsymbol u}\), we have +\[ + \rho = \frac{Q}{V}, \hspace{10mm} + {\boldsymbol J} = \rho {\boldsymbol u}. +\] +In the rest frame of the charges, we have the proper density +\[ + \rho_0 = \frac{Q}{V_0} +\] +in terms of the rest volume \(V_0\), which is related to the perceived +volume \(V\) in the original frame by +\[ + V = \sqrt{1 - u^2/c^2} V_0. +\] +We thus obtain +\[ + \rho = \rho_0 \frac{1}{\sqrt{1 - u^2/c^2}}, \hspace{10mm} + {\boldsymbol J} = \rho_0 \frac{{\boldsymbol u}}{\sqrt{1 - u^2/c^2}}. +\] +Recognizing the proper velocity, we thus get that charge density and current density can together form the +

+
+

+{\bf Current density 4-vector} +\[ + J^\mu = \rho_0 \eta^\mu, \hspace{10mm} + J^\mu = \left( c\rho, J_x, J_y, J_z \right) + \] +

+ +
+

+The continuity equation (\ref{eq:continuity}) takes the simple form +

+
+

+{\bf Continuity equation} +\[ + \frac{\partial J^\mu}{\partial x^\mu} = 0 + \] +

+ +
+

+while similarly the notation simplifies for +

+
+

+{\bf Maxwell's equations} +\[ + \frac{\partial F^{\mu \nu}}{\partial x^\nu} = \mu_0 J^\mu, + \hspace{10mm} + \frac{\partial G^{\mu \nu}}{\partial x^\nu} = 0 + \] +

+ +
+ +

+In terms of \(F^{\mu \nu}\) and the proper velocity \(\eta^\mu\), we also have the +

+
+

+{\bf Minkowski force on a charge \(q\)} +\[ + K^\mu = q F^{\mu \nu} \eta_\nu + \] +

+ +
+

+whose vector components are +\[ + {\boldsymbol K} = \frac{q}{\sqrt{1 - u^2/c^2}} \left( + {\boldsymbol E} + {\boldsymbol u} \times {\boldsymbol B} \right) +\] +which becomes the Lorentz force law when remembering +(\ref{eq:MinkowskiForce}). +

+ + +

+We had +\[ + {\boldsymbol E} = -{\boldsymbol \nabla} V - \frac{\partial {\boldsymbol A}}{\partial t}, \hspace{10mm} + {\boldsymbol B} = {\boldsymbol \nabla} \times {\boldsymbol A}. +\] +We can group the potentials together into a 4-vector: +\[ + A^\mu = \left( V/c, A_x, A_y, A_z \right). +\] +The field tensor is then expressed as +\[ + F^{\mu \nu} = \frac{\partial A^\nu}{\partial x_\mu} - \frac{\partial A^\mu}{\partial x_\nu}. +\] +The inhomogeneous Maxwell equation becomes +\[ + \frac{\partial F^{\mu \nu}}{\partial x^\nu} = \mu_0 J^\mu ~~\longrightarrow~~ + \frac{\partial}{\partial x_\mu} \left(\frac{\partial A^\nu}{\partial x^\nu} \right) - \frac{\partial}{\partial x_\nu} \left( \frac{\partial A^\mu}{\partial x^\nu} \right) = \mu_0 J^\mu +\] +We can now exploit gauge invariance +\[ + A^\mu ~~\longrightarrow~~ {A^\mu}^\prime = A^\mu + \frac{\partial \lambda}{\partial x_\mu} +\] +which leaves \(F^{\mu \nu}\) invariant. In particular, we can choose +the Lorenz gauge (\ref{eq:InhomogeneousMaxwellLorenzGauge}) here expressed as +\[ + \frac{\partial A^\mu}{\partial x^\mu} = 0. +\] +Defining the +

+
+

+{\bf d'Alembertian operator} +\[ + \square^2 \equiv \frac{\partial}{\partial x_\nu} \frac{\partial}{\partial x^\nu} = {\boldsymbol \nabla}^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} + \] +

+ +
+

+we obtain the final form of +

+ +
+

+{\bf Maxwell's equations (Lorenz gauge, 4-vector notation)} +\[ + \square^2 A^\mu = -\mu_0 J^\mu + \] +

+ +
+

+which is the most aesthetically pleasing and practical form +of these equations. +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_rem_mre.html b/build/red_rem_mre.html new file mode 100644 index 0000000..49894a1 --- /dev/null +++ b/build/red_rem_mre.html @@ -0,0 +1,1979 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Magnetism as a Relativistic Effect + + +red.rem.mre

+
+

+Electromagnetism is by construction fully compatible with special relativity. +Going further, special relativity means that the existence of electricity +implies the existence of magnetism, and vice-versa. +

+ +

+To illustrate this, we take a simple example +

+ +

+Consider a wire at rest in the lab frame. This wire carries a current made of a (positive) line charge density \(\lambda\) moving towards the right at velocity \(v\), and a (negative) line charge density \(-\lambda\) moving towards the left at velocity \(-v\). In the lab frame, the current is thus +\[ + I_{\mbox{\tiny lab}} = 2 \lambda v +\] +Additionally, in the lab frame, there is a charge \(q\) situated +at a distance \(s\) from the cable and moving with a velocity \(u < v\) parallel to the wire. In the lab frame, there is no electrical force between the wire and the charge, since the wire carries no net charge. +

+ +

+Let us now examine this situation in the rest frame of the moving particle. +In this frame, the velocities of the line charges in the wire are given by +Einstein's velocity addition rule: +\[ + v_\pm = \frac{v \mp u}{1 \mp uv/c^2} +\] +Since \(v_- > v_+\), Lorentz contraction is stronger for the negative line charges +than for the positive ones. In this frame, the wire thus carries a nonzero net charge. The densities are +\[ + \lambda_\pm = \pm \gamma_\pm ~\lambda_0 +\] +where \(\lambda_0\) is the line charge density in the rest frame of the line charges, and +\[ + \gamma_\pm = \frac{1}{\sqrt{1 - v_\pm^2/c^2}}. +\] +The relationship between \(\lambda\) and \(\lambda_0\) is +\[ + \lambda = \gamma \lambda_0, \hspace{10mm} + \gamma = \frac{1}{\sqrt{1 - v^2/c^2}}. +\] +The dilation factors in the test particle's frame are thus +

+\begin{align} + \gamma_\pm &= \frac{1}{\sqrt{1 - (v \mp u)^2/(c^2 \mp uv)^2}} + = \frac{c^2 \mp uv}{\sqrt{(c^2 \mp uv)^2 - c^2 (v \mp u)^2}} \nonumber \\ + &= \frac{c^2 \mp uv}{\sqrt{(c^2 - v^2)(c^2 - u^2)}} + = \gamma \frac{1 \mp uv/c^2}{\sqrt{q - u^2/c^2}} +\end{align} +

+so the resultant line charge in the test frame is +\[ + \lambda_{\mbox{\tiny test}} = \lambda_+ + \lambda_- + = \lambda_0 ( \gamma_+ - \gamma_-) + = -\frac{2\lambda u v}{c^2 \sqrt{1 - u^2/c^2}}. +\] +Therefore, as a result of Lorentz contraction, a current-carrying wire which is +neutral in one reference frame, can appear to be charged in another. +

+ +

+In the frame of the test particle, there is an electric field +equal to that of a uniformly charged wire: +\[ + E = \frac{\lambda_{\mbox{\tiny test}}}{2\pi \epsilon_0 s} +\] +so the force (in the test frame) is +\[ + F_{\mbox{\tiny test}} = q E = -\frac{\lambda v}{\pi \epsilon_0 c^2 s} \frac{q u}{\sqrt{1 - u^2/c^2}}. +\] +If there is a force on our test charge in this test frame, there must +also be one in the lab frame. Using equation (\ref{eq:ForceTransfoSimple}), +\[ + F = \sqrt{1 - u^2/c^2} ~F_{\mbox{\tiny test}} + = -\frac{\lambda v}{\pi \varepsilon_0 c^2} \frac{qu}{s} +\] +which upon recognizing \(c^2 = \frac{1}{\varepsilon_0 \mu_0}\) +and the current \(I = 2 \lambda v\) becomes +\[ + F = - q u ~\frac{\mu_0 I}{2\pi s} +\] +which you will recognize as the magnetic part of the Lorentz force +for a charge \(q\) moving at velocity \(v\) in the presence of the +magnetic field of a long straight wire carrying current \(I\). +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_rm.html b/build/red_rm.html new file mode 100644 index 0000000..ac091f2 --- /dev/null +++ b/build/red_rm.html @@ -0,0 +1,1896 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Relativistic Mechanics + + +red.rm

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_rm_Mf.html b/build/red_rm_Mf.html new file mode 100644 index 0000000..6d2b6b0 --- /dev/null +++ b/build/red_rm_Mf.html @@ -0,0 +1,2011 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Relativistic version of Newton's Laws; the Minkowski Force + + +red.rm.Mf

+
+

+Newton's second law remains valid provided we use the relativistic momentum: +

+
+

+{\bf Newton's law (relativistic case)} +\[ + {\boldsymbol F} = \frac{d{\boldsymbol p}}{dt} + \] +

+ +
+ +
+

+\paragraph{Example 12.10: Motion under a constant force.} A particle +of mass \(m\) is subjected to a constant force \(F\). If it starts at the +origin at \(t=0\), what is it's position as a function of time? +\paragraph{Solution:} +\[ + \frac{dp}{dt} = F, ~~p(0) = 0 ~~\longrightarrow~~ + p = Ft + \] +and thus +\[ + p(t) = \frac{m u(t)}{1 - u(t)^2/c^2} = Ft + ~~\longrightarrow~~ u(t) = \frac{(F/m)t}{\sqrt{1 + (Ft/mc)^2}}. + \] +Integrating again to get the displacement, +\[ + x(t) = \frac{F}{m}\int_0^t dt' \frac{t'}{\sqrt{1 + (Ft'/mc)^2}} + = \frac{mc^2}{F} \left[ \sqrt{1 + (Ft/mc)^2} - 1 \right]. + \] +The particle's world line thus shows {\bf hyperbolic motion}. +

+ +
+ + + +

+\paragraph{Work and energy} +In the context of relativity, work is still the line integral of the force: +\[ + W \equiv \int {\boldsymbol F} \cdot d{\boldsymbol l} + \label{eq:RelativisticWork} +\] +The relationship between work done and increased energy also still holds: +\[ + W = \int d{\boldsymbol l} \cdot \frac{d{\boldsymbol p}}{dt} + = \int dt \frac{d {\boldsymbol l}}{dt} \cdot \frac{d{\boldsymbol p}}{dt} + = \int dt {\boldsymbol u} \cdot \frac{d{\boldsymbol p}}{dt} +\] +but +\[ + \frac{d{\boldsymbol p}}{dt} \cdot {\boldsymbol u} + = \frac{d}{dt} \left( \frac{m {\boldsymbol u}}{\sqrt{1 - u^2/c^2}} \right) \cdot {\boldsymbol u} + = \frac{d}{dt} \left( \frac{m c^2}{\sqrt{1 - u^2/c^2}} \right) + = \frac{dE}{dt} +\] +and we thus get +\[ + W = \int dt \frac{dE}{dt} = \Delta E +\] +

+ + + +

+\paragraph{Force} +Since \({\boldsymbol F}\) involves a derivative with respect to ordinary time, +it does not transform well under Lorentz transformations. +For the example of motion along \(\hat{\boldsymbol x}\), +the transverse components transform similarly: +\[ + \bar{F}_y = \frac{d\bar{p}_y}{d\bar{t}} + = \frac{dp_y}{\gamma dt - \frac{\gamma \beta}{c} dx} + = \frac{dp_y/dt}{\gamma \left( 1 - \frac{\beta}{c} \frac{dx}{dt}\right)} + = \frac{F_y}{\gamma (1 - \beta u_x/c)}, + \hspace{6mm} + \bar{F}_z = \frac{F_z}{\gamma (1 - \beta u_x/c^2)} +\] +whereas the longitudinal component transforms in a complicated way: +\[ + \bar{F}_x = \frac{d\bar{p}_x}{d\bar{t}} + = \frac{\gamma dp_x - \gamma \beta dp^0}{\gamma dt - \frac{\gamma \beta}{c}dx} + = \frac{F_x - \frac{\beta}{c} \frac{dE}{dt}}{1 - \beta u_x/c} + = \frac{F_x - \beta({\boldsymbol u} \cdot {\boldsymbol F})/c}{1 - \beta u_x/c}. +\] +For the specific case where the particle is instantaneously at rest in +the original frame, then +\[ + \bar{\boldsymbol F}_\perp = \frac{1}{\gamma} {\boldsymbol F}_\perp, + \hspace{10mm} + \bar{F}_\parallel = F_\parallel. + \label{eq:ForceTransfoSimple} +\] +

+ +

+The way to avoid complicated transformation rules is to define a four-vector +as the derivative of momentum with respect to proper time, which leads to +the definition of the +

+
+

+{\bf Minkowski force} +\[ + {\boldsymbol K} = \frac{d{\boldsymbol p}}{d\tau} + = \left( \frac{dt}{d\tau} \right) \frac{d{\boldsymbol p}}{dt} + = \frac{1}{\sqrt{1 - u^2/c^2}} {\boldsymbol F} + \label{eq:MinkowskiForce} + \] +

+ +
+

+whose zeroth component is defined as \(1/c\) times the rate of increase of energy, +\[ + K^0 = \frac{dp^0}{d\tau} = \frac{1}{c} \frac{dE}{d\tau}. +\] +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_rm_pt.html b/build/red_rm_pt.html new file mode 100644 index 0000000..38b9798 --- /dev/null +++ b/build/red_rm_pt.html @@ -0,0 +1,1956 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Proper Time and Proper Velocity + + +red.rm.pt

+
+

+If you move at velocity \(u\), then, as compared to a ground clock, +your time will go slower. For a ground clock time interval \(dt\), +your {\bf proper time} interval is +\[ + d\tau = \sqrt{1 - u^2/c^2}~dt. +\] +For the observer on the ground, your velocity is the rate of change +of your position \({\boldsymbol l}\) with respect to ground time: +\[ + {\boldsymbol u} = \frac{d {\boldsymbol l}}{dt} +\] +and this is called the {\bf ordinary velocity}. +The {\bf proper velocity} is defined as the hybrid-frame quantity +(distance as measured on the ground) divided by (proper time interval): +

+
+

+{\bf Proper velocity} +\[ + {\boldsymbol \eta} \equiv \frac{d {\boldsymbol l}}{d\tau} + \] +

+ +
+

+Proper and ordinary velocity are thus related by +\[ + {\boldsymbol \eta} = \frac{1}{\sqrt{1 - u^2/c^2}} {\boldsymbol u}. +\] +The nice thing about proper velocity (as compared to ordinary velocity) +is that it transforms simply from one inertial system to another. +By adding the zeroth component +\[ + \eta^0 = \frac{dx^0}{d\tau} = c \frac{dt}{d\tau} = \frac{c}{\sqrt{1-u^2/c^2}} +\] +we can define the +

+
+

+{\bf four-velocity} or {\bf proper velocity four-vector} +\[ + \eta^\mu \equiv \frac{dx^\mu}{d\tau} + \] +which transforms as +\[ + \bar{\eta}^\mu = \Lambda^\mu_\nu \eta^\nu + \] +

+ +
+

+(the transformation is simple because \(d\tau\) in the denominator is an +invariant). +

+ +

+By contrast, the ordinary velocities obey cumbersome transformation rules: +for our usual relative frame velocity of \(v\) in the \(x\) direction, +\[ + \bar{u}_x = \frac{d\bar{x}}{dt} = \frac{u_x - v}{1-v u_x/c^2}, \hspace{10mm} + \bar{u}_y = \frac{d\bar{y}}{dt} = \frac{u_y}{1-v u_x/c^2}, \hspace{10mm} + \bar{u}_z = \frac{d\bar{z}}{dt} = \frac{u_z}{1-v u_x/c^2}. +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_rm_rme.html b/build/red_rm_rme.html new file mode 100644 index 0000000..9481275 --- /dev/null +++ b/build/red_rm_rme.html @@ -0,0 +1,1959 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Relativistic Momentum and Energy + + +red.rm.rme

+
+
+

+The {\bf relativistic momentum} \({\boldsymbol p}\) is defined as +\[ + {\boldsymbol p} \equiv m {\boldsymbol \eta} = + \frac{m {\boldsymbol u}}{1 - u^2/c^2}. + \] +The {\bf relativistic energy} is defined as +\[ + E \equiv \frac{m c^2}{\sqrt{1 - u^2/c^2}}. + \] +These can be combined into the {\bf energy-momentum four-vector} +\[ + p^\mu \equiv m \eta^\mu. + \] +

+ +
+ +

+When the object is stationary, its energy is the +

+
+

+{\bf Rest energy} +\[ + E_{\mbox{\tiny rest}} \equiv m c^2. + \] +

+ +
+

+When moving, the difference between relativistic and rest energies +is the +

+
+

+{\bf Kinetic energy} +\[ + E_{\mbox{\tiny kin}} \equiv E - mc^2 = mc^2 \left( \frac{1}{\sqrt{1-u^2/c^2}} - 1 \right). + \] +

+ +
+

+For velocities much smaller than the speed of light, we can expand +this to +\[ + E_{\mbox{\tiny kin}} = \frac{1}{2} mu^2 + \frac{3}{8} \frac{mu^2}{c^2} + ... +\] +

+ +

+In a closed system, +

+
+

+{\bf Total relativistic energy and momentum is conserved} +\[ + E^2 - c^2 p^2 = m^2 c^4 + \] +

+ +
+ +

+N.B.: don't confuse an {\bf invariant} quantity with a {\bf conserved} quantity. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_sr.html b/build/red_sr.html new file mode 100644 index 0000000..01a351a --- /dev/null +++ b/build/red_sr.html @@ -0,0 +1,1896 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ + +

Special Relativity + + +red.sr

+ +
+
+ + +

In this section:

+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_sr_4v.html b/build/red_sr_4v.html new file mode 100644 index 0000000..9b4971c --- /dev/null +++ b/build/red_sr_4v.html @@ -0,0 +1,2003 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Covariant and Contravariant Four-Vectors + + +red.sr.4v

+
+

+\paragraph{Four-vectors.} Let's introduce the standard notations +\[ + x^0 \equiv ct, \hspace{10mm} \beta \equiv \frac{v}{c}, + \hspace{10mm} x^1 = x, ~~x^2 = y, ~~x^3 = z. +\] +The Lorentz transformation then reads +

+
+

+{\bf Lorentz transformation (motion along \(x\) at velocity \(v\))} +\[ + \bar{x}^0 = \gamma \left( x^0 - \beta x^1 \right), + ~~~~\bar{x}^1 = \gamma \left( x^1 - \beta x^0 \right), + ~~~~\bar{x}^2 = x^2, + ~~~~\bar{x}^3 = x^3 + \] +or in matrix form +\[ + \left( \begin{array}{c} \bar{x}^0 \\ \bar{x}^1 \\ \bar{x}^2 \\ \bar{x}^3 + \end{array} \right) + = \left( \begin{array}{cccc} + \gamma & -\gamma \beta & 0 & 0 \\ + -\gamma \beta & \gamma & 0 & 0 \\ + 0 & 0 & 1 & 0 \\ + 0 & 0 & 0 & 1 \end{array} \right) + \left( \begin{array}{c} x^0 \\ x^1 \\ x^2 \\ x^3 \end{array} \right) + \] +

+ +
+

+This can be compactly written as +\[ + \bar{x}^\mu = \sum_{\nu = 0}^3 \Lambda^\mu_\nu x^\nu. +\] +

+ +

+\paragraph{Covariant and contravariant vectors.} Four-vectors with +upper index are called {\it contravariant}. Their lower-index +counterparts are called {\it covariant} vectors and are obtained by +using the Minkowski metric \(g_{\mu \nu}\) according to +

+
+

+\[ + a_\mu = \sum_{\nu = 0}^3 g_{\mu \nu} a^\nu, \hspace{10mm} + g_{\mu \nu} = \left( \begin{array}{cccc} + -1 & 0 & 0 & 0 \\ + 0 & 1 & 0 & 0 \\ + 0 & 0 & 1 & 0 \\ + 0 & 0 & 0 & 1 \end{array} \right) + \] +

+ +
+

+\paragraph{Scalar products} are defined as the in-product of covariant/contravariant four-vectors, +

+
+

+\[ + \sum_{\mu = 0}^3 a^\mu b_\mu \equiv a^\mu b_\mu + \] +

+ +
+

+where in the right-hand side we have introduced the +{\bf Einstein summation convention}, namely that any repeated index +is implicitly summed over. As you can trivially check, it doesn't matter +which vector is co/contravariant: \(a^\mu b_\mu = a_\mu b^\mu\). +Scalar products are Lorentz-invariant and thus take the same value in +all inertial systems. +

+ +

+\paragraph{Invariant intervals.} Generalizing the notion of the norm of +a vector, the scalar product of a four-vector with itself is known as +the invariant interval. Because of the geometry of spacetime, the invariant +can take positive or negative values. The nomenclature goes as follows: +

+\begin{center} + \begin{tabular}{cc} + $a^\mu a_\mu > 0$ & $a^\mu$ is {\it spacelike} \\ + $a^\mu a_\mu < 0$ & $a^\mu$ is {\it timelike} \\ + $a^\mu a_\mu = 0$ & $a^\mu$ is {\it lightlike} + \end{tabular} +\end{center} +

+For two events \(A\) and \(B\), the difference +\[ + \Delta x^\mu \equiv x_A^\mu - x_B^\mu +\] +is called the {\bf displacement four-vector} and its self-scalar product +is the {\bf invariant interval} between the two events: +\[ + I \equiv \Delta x^\mu \Delta x_\mu = -c^2 \Delta t^2 + |{\boldsymbol x}|^2 +\] +where \(t\) is the time difference between the events and \({\boldsymbol x}\) +is their spatial separation vector. +

+ +

+\paragraph{Spacetime diagrams.} These are also know as +{\it Minkowski diagrams}. Time is on the vertical axis, space on the +horizontal one. The trajectory of a particle is known as its +{\bf world line}. Light is represented as propagating at lines at +45 degrees, defining the {\bf forward} and +{\bf backward light cones}. Lorentz transformations, which preserve +all invariant intervals, move spacetime points around but leave them +on the same hyperboloid. +

+
+
+ + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_sr_Lt.html b/build/red_sr_Lt.html new file mode 100644 index 0000000..7228f22 --- /dev/null +++ b/build/red_sr_Lt.html @@ -0,0 +1,1966 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Lorentz Transformations + + +red.sr.Lt

+
+

+To talk about coordinate transformations, it is necessary to talk about +{\it events}, namely occurrences at a specific point in space and time. +

+ +

+We will use two inertial frames of reference: \({\cal S}\) and \(\bar{\cal S}\). +We will assume that \(\bar{\cal S}\) is moving relative to \({\cal S}\) +at velocity \(v\) in the positive \(x\) direction. +

+ +

+Imagine we have an event \(E\) occurring at \((t, x, y, z)\). +We would like to know the coordinates \((\bar{t}, \bar{x}, \bar{y}, \bar{z})\) +in system \(\bar{\cal S}\). +

+ +

+If the clock is started at the moment at which the origins \({\cal O}\) +and \(\bar{\cal O}\) pass each other, then after a time \(t\), +\(\bar{\cal O}\) will be at a distance \(vt\) from \({\cal O}\) +and we would have +\[ + x = d + vt, +\] +where \(d\) is the distance from \(\bar{\cal O}\) to \(\bar{\cal A}\) +(\(\bar{\cal A}\) being the point on the \(\bar{x}\) axis that is even +with \(E\) when the event occurs). +

+ +

+If Galilean physics is used, then \(d = \bar{x}\) and the transformation +rules are +\[ + \bar{t} = t, ~~\bar{x} = x - vt, ~~\bar{y} = y, ~~\bar{z} = z. +\] +If however we properly take into account Lorentz contraction, we +must set +\[ + d = \frac{1}{\gamma} \bar{x} ~~\longrightarrow~~ \bar{x} = \gamma (x - vt). +\] +

+ +

+Doing the same argument from the point of view of an observer at +rest in frame \(\bar{S}\), we would write +\[ + \bar{x} = \bar{d} - v \bar{t} +\] +where \(\bar{d}\) is the distance from \({\cal O}\) to \({\cal A}\) at time +\(\bar{t}\) (\({\cal A}\) being the point on the \(x\) axis that is even with +\(E\) when the event occurs). Again invoking Lorentz, +\[ + \bar{d} = \frac{1}{\gamma} x ~~\longrightarrow~~ x = \gamma(\bar{x} + v \bar{t}). +\] +Solving these relations yields the dictionary for +

+
+

+{\bf Lorentz transformations (motion along \(x\) at velocity \(v\))} +

+\begin{align} + \bar{t} &= \gamma \left( t - \frac{v}{c^2} x \right), & \bar{y} &= y, \nonumber\\ + \bar{x} &= \gamma \left( x - vt \right), & \bar{z} &= z +\end{align} + +
+ +

+\paragraph{Einstein's velocity addition rule.} Using these rules, +one can show that velocities add as +\[ + v_{13} = \frac{v_{12} + v_{23}}{1 + v_{12}v_{23}/c^2} +\] +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/red_sr_p.html b/build/red_sr_p.html new file mode 100644 index 0000000..b27812c --- /dev/null +++ b/build/red_sr_p.html @@ -0,0 +1,1975 @@ + + + + + + +Pre-Quantum Electrodynamics + + + + + + + + + +
+
+

+Pre-Quantum Electrodynamics +

+
+ +
+

Postulates and their consequences + + +red.sr.p

+
+

+Einstein's postulates: +

+ +
    +
  • +Postulate 1: All intertial frames are equivalent with respect to all the laws of physics
  • + +
  • +Postulate 2: The speed of light in empty space always has the same value \(c\).
  • +
+ + +

+This has a number of important consequences. +

+ +

+\paragraph{Relativity of simultaneity:} two events which are simultaneous in one reference frame, are not necessarily simultaneous in another one. +

+ +

+\paragraph{Time dilation:} example of a light ray in a travelling train car. +For the observer inside the car: \(\Delta t_{\mbox{\tiny car}} = h/c\). +For an observer on the ground, if the train is moving at velocity \(v\), +then \(\Delta t_{\mbox{\tiny gr}} = \sqrt{h^2 + v^2 \Delta t_{\mbox{\tiny gr}}^2}/c\) so +\[ + \Delta t_{\mbox{\tiny gr}} = \frac{h}{c} \frac{1}{\sqrt{1 - v^2/c^2}} +\] +and we get +\[ + \Delta t_{\mbox{\tiny tr}} = \sqrt{1 - v^2/c^2}~ \Delta t_{\mbox{\tiny gr}} +\] +so the time interval in the train is shorter, namely there is a +

+
+

+{\bf Time dilation factor} +\[ + \gamma = \frac{1}{\sqrt{1 - v^2/c^2}} + \label{eq:Gamma} + \] +

+ +
+ +

+\paragraph{Lorentz contraction:} lengths are also modified. +Back to our train, with a mirror on one end. A light signal +is sent from the opposite end, and the time for the round-trip +of the light is measured. For the observer on the +train, the time is \(\Delta t_{\mbox{\tiny tr}} = 2 \Delta x_{\mbox{\tiny tr}}/c\) +with \(\Delta x_{\mbox{\tiny tr}}\) being the length of the train car. +For the observer on the ground, the total time is made up of the +back and forth journey of the light, with times +\[ + \Delta t_{\mbox{\tiny gr,1}} = \frac{\Delta x_{\mbox{\tiny gr}} + v \Delta t_{\mbox{\tiny gr,1}}}{c}, \hspace{10mm} + \Delta t_{\mbox{\tiny gr,2}} = \frac{\Delta x_{\mbox{\tiny gr}} - v \Delta t_{\mbox{\tiny gr,2}}}{c} +\] +so +\[ + \Delta t_{\mbox{\tiny gr,1}} = \frac{\Delta x_{\mbox{\tiny gr}}}{c-v}, \hspace{10mm} + \Delta t_{\mbox{\tiny gr,2}} = \frac{\Delta x_{\mbox{\tiny gr}}}{c+v} +\] +and thus +\[ + \Delta t_{\mbox{\tiny gr}} = + \Delta t_{\mbox{\tiny gr,1}} + \Delta t_{\mbox{\tiny gr,2}} + = \frac{2 \Delta x_{\mbox{\tiny gr}}}{c} \frac{1}{1 - v^2/c^2}. +\] +Using the time dilation relation then gives +

+
+

+{\bf Lorentz contraction} +\[ + \Delta x_{\mbox{\tiny tr}} = \frac{1}{\sqrt{1 - v^2/c^2}} \Delta x_{\mbox{\tiny gr}} + \] +

+ +
+

+Note that a moving object is only contracted in its direction of motion. +

+
+
+ + + + +
+

Author: Jean-Sébastien Caux

+

Created: 2022-02-07 Mon 08:02

+

Validate

+
+ + +
+ \ No newline at end of file diff --git a/build/style.css b/build/style.css new file mode 100644 index 0000000..a7ff816 --- /dev/null +++ b/build/style.css @@ -0,0 +1,264 @@ + +/* body { */ +/* margin: 1rem; */ +/* padding: 1rem; */ +/* } */ + +html { + padding: 4rem; +} +body{ + margin: 1rem auto; + max-width: 60rem; + line-height: 1.4; + font-size: 1.1rem; + color: #222; + padding: 0 1rem; + overflow: auto; +} + +.title { + margin-bottom: 2rem; +} + +/* Table of contents */ +nav#collapsed-table-of-contents { + margin-bottom: 1rem; +} +nav#collapsed-table-of-contents details { + background-color: #e8e8e8; + border: none; + margin: 0.5rem; +} +nav#collapsed-table-of-contents details summary { + padding: 0.5rem; +} +nav#collapsed-table-of-contents > details > summary { /* bigger padding for main toc */ + padding: 1rem; +} +nav#collapsed-table-of-contents details ul { + list-style: none; + margin: 0.5rem; + padding: 0; +} +nav#collapsed-table-of-contents details > ul > li { + margin: 0.5rem; +} +nav#collapsed-table-of-contents details > ul > li > a { + margin: 0.5rem 1rem; +} +nav#collapsed-table-of-contents details > ul > li.toc-open { + background-color: #c0e8d0; +} +nav#collapsed-table-of-contents details > ul > li.toc-currentpage { + background-color: #a0e0b0; +} +nav#collapsed-table-of-contents details[open] { + border: 1px solid gray; +} +nav#collapsed-table-of-contents details[open] > summary { + background-color: #d0d0d0; +} +nav#collapsed-table-of-contents details > summary:hover { + background-color: #d8d8d8; +} +nav#collapsed-table-of-contents details > summary.toc-open { + background-color: #d0e8d0; +} +nav#collapsed-table-of-contents details > summary.toc-currentpage { + background-color: #a0e0b0; +} + +div#text-table-of-contents ul { + margin: 0; + list-style: none; +} + + +/* DEPREC Navbar */ +div.navbar { + list-style: none; +} +div.navbar li { + display: inline; +} + + +/* Breadcrumbs */ +ul.breadcrumbs { + list-style: none; +} +ul.breadcrumb li { + display: inline; +} +ul.breadcrumb li+li:before { + content: "/\00a0"; +} + +ul.navigation-links { + list-style: none; + margin: 0; +} +ul.navigation-links > li { + font-size: 70%; + display: inline-block; + margin-right: 1rem; +} +ul.navigation-links > li > { + text-decoration: none; +} + +table th, table td { + padding: 0.5rem; +} + +/* HTML5-specific tags */ + +aside { + width: 40%; + padding-left: .5rem; + margin-left: .5rem; + float: right; + box-shadow: inset 5px 0 5px -5px #29627e; + font-style: italic; + color: #29627e; +} + +aside > p { + margin: .5rem; +} + +details { + border: 1px solid gray; + margin: 1rem; + padding: rem; +} +summary { + padding: 1rem; +} +details[open] > p, ul { + margin-left: 1rem; + margin-right: 1rem; + margin: 1rem; +} + + +/* Preformatted code blocks */ +pre { + border-radius: .3rem; + background-color: #f2efe4; + padding: .5rem; +} + + +/* rank-based container classes */ +.rant { + opacity: 0.5; +} + + +/* Environment-specific styles */ + +.prereq { + background-color: rgba(191, 0, 0, 0.2); +} +.objectives { + background-color: rgba(191, 191, 255, 0.6); +} +.core { + background-color: rgba(191, 255, 191, 0.4); +} +.main { + background-color: rgba(191, 255, 191, 0.2); +} +.example { + background-color: rgba(255, 255, 191, 0.6); +} +.info { + background-color: rgba(159, 255, 255, 0.4); +} +.context { + background-color: rgba(191, 223, 255, 0.6); +} + +/* when details are open, darken summary */ +details[open].prereq > summary { + background-color: rgba(191, 0, 0, 0.1); +} +details[open].objectives > summary { + background-color: rgba(191, 191, 255, 0.6); +} +details[open].core > summary { + background-color: rgba(191, 255, 191, 0.4); +} +details[open].main > summary { + background-color: rgba(191, 255, 191, 0.2); +} +details[open].example > summary { + background-color: rgba(255, 255, 191, 0.6); +} +details[open].info > summary { + background-color: rgba(159, 255, 255, 0.4); +} +details[open].context > summary { + background-color: rgba(191, 223, 255, 0.6); +} + + +/* Permalinks to sections */ +a.headline-permalink, span.headline-id { + float: right; + margin-right: 1rem; + font-size: 70%; + text-decoration: none; +} + +/* when contextual colors are used for a div */ +div.prereq, div.objectives, div.core, div.main, div.example, div.info, div.context { + margin: 1rem; + padding: 1rem; + padding-bottom: 1.5rem; /* to fit the alteqlabels inside colored box */ + overflow: auto; +} + +/* Giving equation nrs from other sources: use aside element */ +/* aside.alteqlabels { */ +/* box-shadow: none; /\* remove standard aside property *\/ */ +/* color: gray; */ +/* font-size: 50%; */ +/* width: 10%; */ +/* } */ +/* aside.alteqlabels > ul { */ +/* list-style: none; */ +/* } */ + +div.eqlabel { + float: right; + clear: both; +} +div.eqlabel p { + margin: 0; + margin-left: 1rem; +} + +div.alteqlabels { + color: gray; + font-size: 60%; + float: right; + clear: both; +} +div.alteqlabels > ul { + list-style: none; + margin-left: 1rem; + padding: 0; +} +/* div.alteqlabels p { */ +/* float: right; */ +/* clear: both; */ +/* } */ + + +/* Equations */ +/* .eq-permalink { */ +/* float: right; */ +/* } */