Pre-Quantum Electrodynamics

Integration by Parts c.m.ic.ip

Example: \({\boldsymbol \nabla} \cdot (f{\bf A}) = f({\boldsymbol \nabla} \cdot {\bf A}) + {\bf A} \cdot ({\boldsymbol \nabla} f)\) implies (via Gauss' theorem)

\[ ∫\cal V {\boldsymbol ∇} ⋅ (f{\bf A}) dτ = ∫\cal V f({\boldsymbol ∇} ⋅ {\bf A}) dτ

  • \cal V {\bf A} ⋅ ({\boldsymbol ∇} f) dτ = \oint f{\bf A} ⋅ d{\bf a},

\]

or in other words

\[ ∫\cal V f({\boldsymbol ∇} ⋅ {\bf A}) dτ = -∫\cal V {\bf A} ⋅ ({\boldsymbol ∇} f) dτ

  • \oint\cal S f{\bf A} ⋅ d{\bf a}.

\label{Gr(1.59)} \]


Author: Jean-Sébastien Caux

Created: 2022-02-07 Mon 08:02

Validate