Pre-Quantum Electrodynamics
Integration by Partsc.m.ic.ip
Example: \({\boldsymbol \nabla} \cdot (f{\bf A}) = f({\boldsymbol \nabla} \cdot {\bf A}) + {\bf A} \cdot ({\boldsymbol \nabla} f)\) implies (via Gauss' theorem)
\[ ∫\cal V {\boldsymbol ∇} ⋅ (f{\bf A}) dτ = ∫\cal V f({\boldsymbol ∇} ⋅ {\bf A}) dτ
- ∫\cal V {\bf A} ⋅ ({\boldsymbol ∇} f) dτ = \oint f{\bf A} ⋅ d{\bf a},
\]
or in other words
\[ ∫\cal V f({\boldsymbol ∇} ⋅ {\bf A}) dτ = -∫\cal V {\bf A} ⋅ ({\boldsymbol ∇} f) dτ
- \oint\cal S f{\bf A} ⋅ d{\bf a}.
\label{Gr(1.59)} \]
Created: 2022-02-07 Mon 08:02