Pre-Quantum Electrodynamics
Induced Surface Chargesems.ca.mi.isc
Use scd_cond, with the normal direction now being \(\hat{\bf z}\):
\[ \sigma(x, y) = \frac{-qd}{2\pi (x^2 + y^2 + d^2)^{3/2}} \tag{scd_dip_z}\label{scd_dip_z} \]
The total induced charge can be obtained by simple integration as \(Q = \int \sigma da\). Using planar coordinates, \(\sigma(r) = \frac{-qd}{2\pi (r^2 + d^2)^{3/2}}\), so
\[ Q = \int_0^{2\pi} d\phi \int_0^{\infty} dr r \frac{-qd}{2\pi (r^2 + d^2)^{3/2}} = \frac{qd}{\sqrt{r^2 + d^2}}|_0^{\infty} = -q \tag{sc_dip_z}\label{sc_dip_z} \]

Created: 2022-02-13 Sun 21:20