Pre-Quantum Electrodynamics
Cartesian Coordinatesems.ca.sv.car
{\bf Example: separation of variables (Cartesian coordinates)}
Two infinite grounded metal plates parallel to the \(xz\) plane, one at \(y = 0\) and the
other at \(y = a\). End at \(x = 0\) closed off with infinite insulated strip maintained
at potential \(V_0 (y)\). Find potential inside the slot.
\paragraph{Solution:} indep of \(z\), so 2d problem. Solve
\[
\frac{\partial^2 V}{\partial^2 x} + \frac{\partial^2 V}{\partial^2 y} = 0
\label{Gr(3.20)}
\]
\[
(i) V(x, y = 0) = 0, \hspace{5mm} (ii)V(x, y = a) = 0, \hspace{5mm} (iii) V(0, y) = V_0 (y), \hspace{5mm} (iv) V (x \rightarrow \infty) \rightarrow 0.
\label{Gr(3.21)}
\]
Look for solutions of form
\[
V(x,y) = X(x) Y(y), \hspace{1cm}
\frac{1}{X} \frac{d^2 X}{dx^2} + \frac{1}{Y} \frac{d^2 Y}{dy^2} = 0
\label{Gr(3.23)}
\]
Choose
\[
\frac{d^2 X_n}{dx^2} = k_n^2 X_n, \hspace{1cm} \frac{d^2Y_n}{dy^2} = -k_n^2 Y_n
\label{Gr(3.26)}
\]
where \(k_n\) is some real number. We can linearly combine solutions of (\ref{Gr(3.26)})
for different \(k_n\) and still get a solution to (\ref{Gr(3.23)}).
Let's look first of all at the solutions of (\ref{Gr(3.26)}) for a given \(k_n\).
Since this is a second-order linear differential equation, there are two linearly
independent solutions. Most general solution:
\[
X_n(x) = Ae^{k_nx} + Be^{-k_nx}, \hspace{1cm} Y_n(y) = C \sin k_ny + D \cos k_ny
\label{Gr(3.27)}
\]
Fix constants: from \((iv)\), \(A = 0\). From \((i)\), D = 0. Left with
\[
V(x,y) = C_n e^{-k_nx} \sin k_n y
\label{Gr(3.28)}
\]
Then, \((ii)\) requires
\[
k_n = \frac{n\pi}{a}, \hspace{1cm} n = 1, 2, 3, ...
\label{Gr(3.29)}
\]
But we can use as solution any linear combination of the functions defined
by these momenta. Fix coefficients with Fourier series:
\[
V(x,y) = \sum_{n=1}^{\infty} C_n e^{-n\pi x/a} \sin (n\pi x/a)
\label{Gr(3.30)}
\]
Needed:
\[
\int_0^a dy \sin(n\pi y/a) \sin (n' \pi y/a) = \delta_{n n'} \frac{a}{2}
\label{Gr(3.33)}
\]
so
\[
C_n = \frac{2}{a} \int_0^a dy V_0(y) \sin(n\pi y/a)
\label{Gr(3.34)}
\]
\paragraph{Specific example:} say that \(V_0(y) = V_0\), some constant. Then, \[ C_n = \frac{2V_0}{a} \int_0^a dy \sin(n\pi y/a) = \frac{2V_0}{n\pi} (1 - \cos n\pi) = \frac{4V_0}{n\pi} \delta_{n, odd} \label{Gr(3.35)} \]
Applicable provided {\bf completeness} and {\bf orthogonality}:
Completeness: \[ f(x) = \sum_{n=1}^{\infty} C_n f_n (y), \hspace{1cm} \forall f \in C^{\infty} \label{Gr(3.38)} \]
Orthogonality: \[ \int_0^a dx f_n (x) f_{n'} (x) = 0, \hspace{1cm} n \neq n' \label{Gr(3.39)} \]
The solution for the specific case \(V_0 (y) = V_0\) therefore is \[ V(x,y) = \frac{4V_0}{\pi}\sum_{n=1, 3, 5, ...}^{\infty} \frac{1}{n} e^{-n\pi x/a} \sin (n\pi x/a) \]
{\bf Example: rectangular pipe}
Two infinitely long grounded plates at \(y = 0,a\) are connected at \(x = \pm b\)
to metal strips maintained at constant \(V = V_0\). Find the potential in the resulting rectangular pipe.
\paragraph{Solution:} indep of \(z\). Laplace: \(\partial^2 V/\partial x^2 + \partial^2 V/\partial y^2 = 0\),
boundary conditions
\[
(i) V (y = 0) = 0, \hspace{5mm} (ii) V (y = a) = 0, \hspace{5mm} (iii) V(x = b) = 0, \hspace{5mm} (iv) V(x = -b) = 0.
\label{Gr(3.40)}
\]
Generic solution: as (\ref{Gr(3.27)}),
\[
V(x,y) = (Ae^{kx} + Be^{-kx}) (C\sin ky + D\cos ky).
\]
By symmetry, \(V(x,y) = V(-x,y)\) so \(A = B\). Now \(e^{kx} + e^{-kx} = 2\cosh kx\). Generic solution becomes
(redefining \(C\) and \(D\))
\[
V(x,y) = \cosh kx (C\sin ky + D\cos ky).
\]
Boundary conditions \((i)\) and \((ii)\) require \(D = 0\), \(k = n\pi/a\) so
\[
V(x,y) = C \cosh(n\pi x/a) \sin(n\pi y/a)
\label{Gr(3.41)}
\]
with \((iv)\) already satisfied if \((iii)\) is. Full solution is linear combination of complete set of functions,
\[
V(x,y) = \sum_{n=1}^{\infty} C_n \cosh(n\pi x/a) \sin(n\pi y/a).
\]
Coefficients: chosen such that \((iii)\) is fulfilled, \(V(b,y) = V_0\). From (\ref{Gr(3.35)}):
\[
V(x,y) = \frac{4V_0}{\pi} \sum_{n = 1, 3, 5, ...} \frac{1}{n} \frac{\cosh (n\pi x/a)}{\cosh(n\pi b/a)} \sin(n\pi y/a).
\label{Gr(3.42)}
\]

Created: 2022-02-10 Thu 08:32